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EQUIPMENT NEEDED
Apple II Plus, lie, or He microcomputer'^mm One disk dr ive
48K memory
Monitor (color capability optional)

STARTING UP
- , 1. Insert a program disk into the disk drive. The label on the disk should be facing up and the

oval cutout pointing inward. Make sure that the diskette is completely inside before closing the
door.

._ 2. Turn on the monitor and the computer. The red light on the disk drive will glow and the drive
will be activated. After 10 seconds, the screen will show the Addison-Wesley triangular logo.

3. Allow 15 seconds for the screen to display a list of programs from which to make a selection.
(Note: You can reduce the waiting time by pressing the space bar to reach the program list.) If.— your computer is an Apple He or He, check to make sure that the Caps Lock key is depressed at

this point.

^^^ 4. If the program list fails to appear, check to see if your computer and monitor are properlyconnected. Should the disk still fail to operate, try one of the following procedures.

^ H E L P
1. If the red light on the disk drive has gone out, open the disk drive door, remove the disk and
turn off the computer; then re-insert the disk, close the door, and turn the computer back on. If

N^«») the disk still fails to operate, try another disk.
2. If the red light stays on and the disk drive continues to spin, press the Control key and hold it
down while pressing the Reset key. If the red light then goes out, follow Procedure 1 above. If

^^ the red light stays on, leave the disk drive running and get help.

HANDLING DISKETTES
Each diskette is encased in black plastic to minimize the amount of surface exposed to the
drives. To protect this sensitive electromagnetic surface, please observe the following rules:

-^ 1. Never turn the computer off when the disk drive's red light is on. If you do, you will probably
damage the diskette.
2. Put the disk into the drive before you turn the computer on.

'~mm* 3. Remove the diskette before you turn the computer off.

4. Grasp the diskette by the label, to avoid touching the surface through the holes. Scratched
disks don't work.

5. Use felt tip pens to write on disk labels; never use pencils or pens.

6. Replace diskettes in their protective wrappers when not in use. Avoid leaving exposed disk-
--mn ettes on a table.

7. Store diskettes away from heat and strong sunlight.

8. Keep disks away from magnets, such as those frequently used at copystands. Exposure to
"*"*■"* magnetic fields of the kind generated by power transformers, for example, can damage the

programs permanently.
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Preface

"The purpose of computation is insight, not numbers."
Richard W. Hamming

We produced The Calculus Toolkit to make it easier for
people to learn and use calculus. There are programs for
insight, exploration, and explanation, programs for solving
equations and evaluating formulas, and programs for drill and
practice. There are programs for graphing functions,
generating tables of function values, investigating vector
fields, graphing solut ions of di fferent ial equat ions,
evaluating definite integrals, and exploring l imits, conic
sections, and complex numbers. The programs work equally well
in the classroom or laboratory and lend themselves to
individual study as well as professional use.

Neither the programs nor this book require you to have
previous computer experience or any knowledge of programming.
Each program is controlled from menus that require only a few
keystrokes to activate. You need only type in your numbers and
formulas and push a button, so to speak, to make the programs
go. All programs except the drill and practice programs allow
you to enter any function you want (within reason) • Every
program uses the computer's graphics capabilities to the
greatest extent possible and contains machine language
subroutines for fast execution.

Each program is supported by a chapter in this book. The
chapter begins with a statement of the program's purpose and a
description of the program's general operation. It then
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discusses the menus and leads you step-by-step through practice
examples accompanied by reproductions of graphics displays.
The chapter then concludes with exercises that guide further
exploration of the program's capabilities or calculus subject.

The appendices contain information about what notation to
use in entering algebraic expressions and function formulas
into the computer. There is also a brief answer section.

The machine language plotting subroutines in twelve of the
programs were constructed by George Lewis while he was an
undergraduate mathematics major at the College of the Virgin
Islands. We would like to thank him for this valuable
contribution. We would also like to thank the Concourse
Program students at MIT who produced early versions of some of
the other programs.

We give special thanks to Richard W. Hamming of the U.S.
Naval Postgraduate School for the advice and kind attention
that helped to shape a number of these programs.

Many valuable suggestions came from people who reviewed
the programs as they developed. We would particularly like to
mention

David R. Hill, Temple University
Leslie Hogben, Iowa State University
David Isles, Tufts University
James D. Lang, Valencia Community College
Chris R. Siragusa, Cypress College
Brian J. Winkel, Rose-Hulman Institute of Technology

It is a pleasure to acknowledge the assistance in editing,
review, and design that the staff of Addison-Wesley Publishing
Company has given to the preparation of this work.

Any errors that may appear are the responsibility of the
authors. We will appreciate having these brought to our
a t ten t ion .

J u n e , 1 9 8 4 R . L . F .
D. T. H.
J . Is. £>.
C. 0. W.



A Super * Grapher (2-D)

1. PURPOSE AND DESCRIPTION
This program graphs functions in rectangular and polar

coordinates. Cartesian and polar functions are entered in the
forms Y = F(X) and R = R(T). Parametric equations are entered
as pairs, in the form X = X(T), Y = Y(T). Any number and
combination of these functions can appear in a single display.

The program checks every formula entered for syntax
before graphing. As it graphs a function, the program ignores
input values that l ie outside the function's domain. If you
ask for a graph of SQR(X), the square root of X, for X-values
from -10 to 10, for example, the program will respond by
graphing the function over the interval 0 < X < 10.

Formulas entered for functions may contain one or two
arbitrary constants, CI and C2, to which you may assign values
to graph selected members from a family of curves.

You may specify the portion of the plane to be displayed
on the screen, the domain of the independent variable X for
cartesian graphs, the domain of the independent variable T for
polar and parametric graphs, the colors of the graphs, and the
number of points to be plotted and connected in making each
graph (3 to 999).

Any display you generate may be saved on a spare disk for
l a t e r r e c a l l .
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2. STEP BY STEP
Load the program from the disk menu (allow 50 seconds),

read the greeting message, and press IkeiukNI to display the
graph type menu shown in Screen 1. Read the menu and proceed
to Example 1.

Isuper*grapher|

111 Graph Y=F(X) (rectangular coord.)
|2| Graph R=R(T) (polar coordinates)
l i l Graph X(T) Y(T) (parametr ic eq.)
|Q| QUIT — leave program

Press the key of your option choice.

Screen 1. The graph type menu.

Example 1. F(X) = SIN(X).
Starting from the graph type menu (Screen 1), press Ilj

to call up the cartesian formula display (Screen 2) •

KCDRRENT F0NCTI0N>|

F(X) » CI + C2*SIN(X)

Press IrEOURNI to keep this function or
type a new function and press I RETURN I.

Screen 2. The cartesian formula display.
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The program's default (starting) formula for this display,
CI + C2*SIN(X), is the formula for a two-parameter family of
functions. Press IRhtukNI to accept the formula and call up
a menu for setting the values of CI and C2. The display will
change to the one shown in Screen 3.

l< SEmNGSTI

F(X) = CI + C2*SIN(X)

PARAMETERS: CI = 0
C2 = 1

WINDOW: XMIN = -3.2
XMAX - 6.3
YMIN = -4
YMAX = 6

Number of steps (3 to 999) = 120
Color number of graph (0 to 7) = 3
To keep a value — press IRkiukNI .
To change a value — type a new value

and press I RETURN I,

Screen 3. The cartesian settings display.

The settings display in Screen 3 shows the current
values of CI and C2, with the cursor blinking beneath the
current value of CI. Unless you elect to change these
values, the function that will be graphed is

F(X) = 0 + 1*SIN(X),
or simply

F(X) = SIN(X).
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The settings display also shows the current X- and Y-
values of the boundaries of the graphing "window," that is,
the rectangular region in the plane that will appear on the
screen when the function is graphed. In this case the
graphing window is the region

- 3 . 2 < X < 6 . 3 , - 4 < T < 6 .
The line

Number of steps (3 to 999) = 120
that appears on the screen just below the window settings
tells you that the computer will plot and connect 120 points
to make the graph of F(X) = SIN(X). The step number controls
the balance between the accuracy of the graph and the speed
with which it is drawn. If the number of points (steps) is
small, for example 3 or 10, the graph will be produced
quickly, but with curved portions crudely drawn. If the
number of points is large, say 200 or more, the graph will be
precise but it will take a relatively long time to appear
because of the number of computations involved.

You may choose one of six colors for the graph:

0 = b l a c k 1 = g r e e n 2 = p u r p l e 3 = w h i t e
4 = b l a c k 5 = o r a n g e 6 = b l u e 7 = w h i t e

The colors will vary from monitor to monitor, especially on
those without tint controls. For monochrome monitors you may
as well leave the color set at 3.

A black graph does not show against a black background,
but it is sometimes useful to erase a graph by regraphing it
in black.

To continue with the example, accept each of the current
settings, one at a time, by pressing IRkjlukNI . With each
I RETURN I, the cursor will move to the next line, leaving the
displayed value in place. You will need to press eight
I RETURN Is in all. After the last one, which accepts the
current color value (3 for white), the menu will disappear,
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and you may watch the graph of F(X) = SIN(X),
-3.2 <. X £ 6.3, develop in its place. The completed
graph is shown in Screen 4.

" " " ' T

^=1

X = -3.2
Y = -4

TO 6.3
TO 6

F(X) = CI + C2*SIN(X)
C 1 = 0 C 2 = l

I Press any key to see options I

Screen 4. The graph of F(X) = SIN(X), -PI < X <. 2*PI.

The display in Screen 4 shows the bounds on the plotting
window, which are X = -3.2 to X = 6.3 and Y = -4 to Y = 6.
The X-axis is marked in integer steps from X = -3 to X = 6.
The Y-axis is marked in integer steps from Y = -4 to Y = 6.
The formula F(X) = CI + C2*SIN(X) appears toward the bottom
of the display along with the parameter values CI = 0 and
C2 = 1 that determine the particular function graphed here,
F(X) = SIN(X).

When you have studied the display in Screen 4, press the
space bar (or any other standard key) to display a list of
the options now available. The list is shown in Screen 5.
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RECTANGULAR F(X)

|<QPTIONS>l

lo l See current d isp lay

111 Same F(X) — new window
|2| New F(X) — same window
IJI New F(X) — new window
Ul Same F/window — new parameters

|c| Change graph type (Rect/Polar/Para)
|D| Save to d isk

|§| QUIT — leave program

Press the key of your option choice.

Screen 5. The rectangular graphing options menu.

Pressing
|o| Recal ls the graph you just left .
Ul Keeps the current function and current values for CI

and C2, but allows you to change XMIN, XMAX, YMIN,
YMAX, the number of plotted points, and the color of
the graph. The graphics screen is erased, and the new
graph plotted.

|2| Allows you to add a new graph to the current display.
You define the new function, and enter the number of
plotted points and color of its graph.

IjJ Starts all over with a new function, window, number of
plotted points, and color.

Ul Keeps the same function family (containing CI and/or
C2) and display but allows you to change the values of
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CI and/or C2. If your function did not contain CI or
C2, Option 4 is not shown.

|c| Sends you back to Screen 1 to change the graph type.
Id| Allows you to save your graph on a separate disk. (See

Section 3, later in this chapter.)
|Q| Returns you to the disk menu.

Just for practice, press |o| to return to the graphics
screen, and then lol again to recall the options menu.

Now press |c| to return to the graph type menu
(Screen 1). This will set the stage for Example 2.

Example 2. The lima^n R(T) = 1.5 + 3*00S(T).
Starting from the graph type menu (Screen 1) press |2J

to call up the polar formula display, shown in Screen 6. The
program's default formula for this display is

R(T) = Cl*(l + C2*C0S(T)).
the formula for a two-parameter family of polar curves called
lima9ons. Linu^on, pronounced "LEEmasahn," is an old
French word for snail.

I < CURRENT FUNCTION) I

R(T) - Cl*(l + C2*C0S(T))

Press I RETURN I to keep this function or
type a new function and press IRkiukNI .

Screen 6. The polar formula display.

Press I RETURN I to accept the formula and call up a menu
for setting the values of CI and C2. The display will change
to the one shown in Screen 7.
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l< SETTINGS Tl

R(T) = Cl*(l + COS(T))

PARAMETERS: CI = 1.5
C2 = 3

WINDOW: XMIN = -3.2
XMAX = 6.3
YMIN = -4
YMAX = 6

DOMAIN FOR T: TMIN = 0
IMAX = 6.3

Number of steps (3 to 999) = 120
Color number of graph (0 to 7) = 3
To keep a value — press I RETURN I.
To change a value — type a new value

and press I RETURN I,

Screen 7. The polar settings display.

The polar settings display is the same as the cartesian
display except for the function formula and the lines that
define the domain of T.

Press I RETURN Is to accept the current values of CI and
C2, the current bounds on X, Y, and T, and the current number
of plotting steps. Then press 15.1 IRkiukNI to graph the
lima9on in orange. The graphics screen from Example 1 will
reappear, and the lima9on added to it. When the plot is
complete the display should look like the one shown in
Screen 8.
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X = -3.2
Y = -4
T = 0

TO 6.3
TO 6
TO 6.3

R(T) = Cl*(l + C2*C0S(T))
C l = 1 . 5 C 2 = 3

IPress any key to see options I

Screen 8. The graphs of Y = SIN(X) and
R(T) = 1.5 + 4.5 COS(T), 0<T< 6.3, together.

After studying the graph of R(T) = 1.5*(1 + 3*C0S(T))
= 1.5 + 4.5 COS(T) in relation to the graph of Y = SIN(X),
press a key to call up the polar graphing options menu.

The polar graphing options menu is just like the
rectangular graphing options menu shown in Screen 5, except
that the top line now reads POLAR R(T) instead of
RECTANGULAR F(X) and the symbols R(T) and R replace F(X) and
F elsewhere in the menu.

After reading through the menu, press |o| to recall the
graphics display, and lol again to return to the menu. Then
press |c| to set the stage for Example 3 by calling up the
graph type menu (Screen 1).
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Example 3. X(T) = 3*SIN(2*T),
Y(T) = 3*COS(3*T), 0 < T < 6.3.

Starting from the graph type menu (Screen 1), press |3.|
to call up the program's default formula for X(T), which is

X(T) = 3*S2N(C1«8T).

Accept this formula by pressing IRkjlukNI. The program's
default formula for Y(T), namely

Y(T) = 3*C0S(C2*T),
will then be added to the screen. Press I RETURN | to accept
this formula as well. The parametric equation settings menu
will then appear on the screen. Except for the defining
equations for X(T) and Y(T) at the top, the value of CI (now
2 instead of 1.5), and the color number (changed to 5 from 3
during the course of Example 2), the menu and settings will
be identical with the one shown in Screen 7.

After reading through the menu, press |RETURN|s, to
accept the current values for CI and C2, the current bounds
on X, Y, and T, and the current number of graphing steps.
Then press 111 I RETURN | to graph the parametric equations in
green. The graphics screen from Example 2, Screen 8, will
reappear, and the graph of the equations

X(T) = 3*SIN(2*T), Y(T) = 3*COS(3*T), 0 ± T < 6.3

will be added to it. The final result should agree with the
one shown in Screen 9.

After viewing the three graphs, press a key to call up
the parametric graphing options screen. The screen will look
like the options screens for cartesian and polar equations
except for the different function names.

This concludes Example 3. If you wish to practice
saving a graph on a separate disk and recalling it again,
then move on to Example 4, the example of the next section.
If you wish instead to practice entering functions to graph,
move on to Examples 5 and 6, the examples of Section 4.
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X = - 3 . 2 T O 6 . 3
Y = - 4 T O 6
T m 0 T O 6 . 3

X(T) = 3*SIN(C1*T)
Y(T) = 3*COS(C2«T)

C l = 2 C 2 = 3

I Press any key to see options I

Screen 9. The graph of X(T) = 3*S1N(2*T),
Y(T) « 3*COS(3«T), 0 £ T < 6.3 has now been added
to the display in Screen 8.

3. SAVING GRAPHS
This section deals with saving graphs for later use.

You save them on a separate formatted disk, not on the
Toolkit disk. While you can use the program SOPER*GRAPHER
to generate and save a graph, you cannot use SUPER*GRAPHER
to recall it later on. Instead, you must boot the disk that
contains the recorded graph and recall the graph with the
commands

HGR iREIURNl
BLOAD < FILENAME >

as described in the following example.
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Example 4. Saving a graph on a separate disk.
Remove the Toolkit disk from your computer's disk

drive, and put in the formatted disk on which you wish to
save your graph. If you have just completed Example 3 in
the previous section, the graph you save will be the one
shown in Screen 9.

In any case, we suppose here that you have just
generated a graph and pressed a key to call up the
appropriate graph options menu. The menu will have an
Option D that looks like this:

|DI Save display to disk.

Press |d| to call up the save graph menu, shown here in
Screen 10.

<SAVE A GRAPH)
SLOT = 6

DRIVE = 1
GRAPH NAME = SG.3*SIN(C1*T)

PRESS l||AVE USING THESE SETTINGS
IcIhange THESE SETTINGS
IgllST FILES ON DISK
|||eturn to display
IqIutt

Screen 10. The save menu.

Normally, the disk controller (the circuit board that
controls the disk drives) is in Slot 6 inside the computer,
and Drive 1 is the drive you would use for SUPER*GRAPHER.
If that is the case, there is no need to change the current
se t t ings .

If you have just completed Example 3, the graph name
in the save display will be the one in Screen 10:
SG.3*SJN(C1«T), a name composed of SG. (for SUPER*GRAPHER)
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and the formula 3*SIN(C1*T) most recently used for X(T).
You may save your graph under this name or whatever the
current name is by pressing |s|. For practice, however, try
changing the name to SIN(X).

First, press |l| to review the file names already in
use on the disk on which you plan to save your graph. If
the name SIN(X) appears in the catalog, use another name.
(In this discussion we shall continue to use SIN(X).) After
reading the name list, press I RETURN I to recall the save
menu (Screen 10).

Press |c|, change the slot and drive numbers or accept
them with |RETURN|s, as appropriate, and when the cursor
arrives at the graph name enter SIN(X) by pressing |s|
III |N| III |X| III I RETURN I. Then press |S| to save the
graph. The word

<SAVING>

will appear on the screen while the graph is being recorded.
When the process is complete, the graph itself will reappear
on the screen. At this point, pressing any standard key
will recall the graphing options menu and you may continue
with SUPER*GRAPHER.

Instead of continuing with SUFER*GRAPHER in this
example, however, let us recall the graph SIN(X) from the
disk onto which it was just saved.

Press iCTRLlRESErl (together) and then press |P| |R|
|£| |6| I RETURN I to boot the disk that contains the file
SIN(X). (This assumes you are using Slot 6.) When the file
is loaded, press

111 |G| |r| I RETURN I
(the display screen will go blank) and then press

III |L| |0| |A| |D| IspatcI Isl III |N| III Ixl III IrcturnI
The graphs in Screen 9, or whatever graph or graphs you
saved under the name SIN(X), should now appear on the
screen. This concludes Example 4.
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If you wish to continue with SUPER*GRAPHER, you must
now return the Toolkit disk to Drive 1, and begin afresh.

4. GRAPHING TOOK OWN FUNCTION
This section gives practice with entering function

formulas. The examples below involve cartesian curves, but
the methods illustrated apply to polar and parametric curves
as well.

Le 5. F($) = C0S(X + 1), -2*PI < X < PI.

Starting from the graph type menu shown in Screen 1, press
llj to call up the cartesian formula display (Screen 2)•

If you wanted to graph the displayed equation,
F(X) = CI + C2*SIN(X), you would just press I RETURN L To
graph a different equation, just type the new equation over
the old one and press iRETURNl. In this case, the new
equation is shorter than the old one, but don't worry about
the characters that remain on the screen from the old
equation; they will disappear when you press I RETURN I at the
end of the new equation.

If you make a typing mistake, use the left arrow key,
l<-L to go back and overstrike the erroneous character with
the correct one. Then use the right arrow key, \z>\, to
return to the end of the formula and press IRkitjkNI •

The computer will check every formula you enter for
correct syntax to be sure that it makes sense
mathematically. To see what happens if you leave out the
last parenthesis when you attempt to enter
F(X) - COS(X + 1), press

|C| lol HI HI |X| |±| 111 \WCM\.
The computer will beep and display the message

Your function is not properly defined.
Please try again.

The cursor will then return to the first character of the
formula you keyed in, in this case "C," and wait for you to
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enter a correct formula.
To continue the example, press the right arrow key,

|->|, seven times to move the cursor to the place where the
missing right parenthesis should go:

F(X) = COS(X + 1_

Type a right parenthesis, |J|, followed by I RETURN L
You should now be ready to set the boundaries of the

graphing window. Press

Ei Hi 13 in in \mm\
to enter -2*PI (Toolkit notation for -2n) as the new XMIN.
Then enter n as the new XMAX by pressing

|P| III IreturnI.
Accept the displayed values

YMIN = -4, YMAX = 6

by pressing two more IrETURNIs.
Next, enter 20 for the number of steps by pressing

|2l lol IreturnI
and select green for the graph color by pressing Ul
IRETURNI. The computer will now graph F(X) = COS(X + 1)
over the interval -2*PI £ X <. PI.

After examining the graph, notice that the data on the
screen give the eight-place decimal approximations to -2*PI
and PI.

Now press a key to move on to the graphing options menu
for the next example.

Example 6. Graph the functions F(X) = C0S(2*X + PI/3) and
G(X) - C0S(-.5*X - 1) in a common graph over the interval
- 2 * P I < X i 4 * P I .

Method 1. Graph F and add the graph of G to the display.

Starting from the cartesian graphing options menu
(Screen 5) press |jj for "New F(X)—new window." When the
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cartesian formula display appears, press

Icl lol Isl III I2I 13 HI l±l HI III IZI HI in \mm\
to enter the formula for F(X) = C0S(2*X + PI/3). Then
change the window settings as necessary to have

XMIN = -2*PI XMAX = 4«PI YMIN = -4 YMAX = 6
Set the number of steps at 120, and the color number at 3
(white). The return you press to enter the color number
wil l start the graphing.

After studying the graph, press a key to return to the
graphing options menu.

To add the graph of C0S(-.5*X - 1) to the graph you
have just drawn, you must use the same graphing window.
Therefore, press |2| for "New F(X)—same window," and then
press

Icl lol III III El III III l±l III El III III Ireroroil
to enter the new formula. Press

HI lol IreturnI
to set the number of graphing steps at 40 (just for
practice), and then press Ul IRkiukNI to request the graph
in green. The graphs in the final display should look like
the ones in Screen 11.

Now press a key to return to the graphing options menu
and prepare for Method 2.

Method 2. In this method we graph the functions
C0S(2*X + PI/3) and C0S(-.5*X - 1) together as members of
the family

F(X) = C0S(C1*X + C2).
To erase the old graphs and start with a clean graphics

display, press 13_1 on the graphing options menu for "New
F(X)—new window." When the cartesian formula display
appears, press

Hi loi 111 in ici in 13 Hi 1+1 icl in iii \mm\
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to enter the formula F(X) = C0S(C1*X + C2).

iT

u ^ \ > * v . . / ^ \ s * \ . j ^ i " yi —

J.
J.

X = -6.28318531 TO 12.5663706
Y = - 4 T O 6

F(X) = C0S(-.5*X - 1)

IPress any key to see options I

Screen 11. Graphs of C0S(2*X + PI/3) and C0S(-.5*X - 1).

Next, enter the values
CI = 2 C2 = PI/3

to select F(X) = C0S(2*X + PI/3) as the function to be
graphed.

The displayed window settings should be the same as in
Method 1; accept them by pressing returns. Then set the
number of plotting steps at 120, and the color number at 3
to graph the function.

After viewing the graph to be sure everything is as it
should be, press a key to return to the graphing options
menu.

Now press Ul and enter the values

CI = - .5 C2 = -1
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that select F(X) = 00S(-.5*X - 1) as the function to be
graphed. Then set the number of plotting steps at 40 (for
faster drawing) and the color number at 1. The final
display should be just like the one in Screen 11, except
that the bottom lines now read

F(X) = C0S(C1*X + C2)
C I = - . 5 C 2 = - 1 .

This concludes Example 6.

PROBLEMS

Use SUPER*GRAPHER to graph each of the following functions.

Rectangular coordinates, Y » F(X)
1. F(X) = SQR(1 - X*X), -21X12, -1 < Y 1 2.

Use 200 steps. Because of the way computer graphics
displays are organized, the appearance of some graphs
may be distorted. For example, the graph of
F(X) = SQR(1 - X*X) may be elliptical instead of
circular. The distortion can be minimized by choosing
window dimensions that satisfy the equation

(XMAX - XJUN) - 1.6*(YMAX - YMIN).
To see the difference this makes, regraph
F(X) = SQR(1 - X*X) with XMIN - -2.4 and XMAX « 2.4.

2. F(X) = C1*SQR(1 - X*X) with CI = 1 and CI - -1 in a
common display.

3. F(X) - 1/SQR(3 - X), -1 1 X < 5, -2 1 Y 1 7,
and the number of plotted points set at 200.

4. F(X) - MT(X), -5 1 X i 5, -5 1 Y 1 5. (INT(X)
is the greatest integer that is less than or equal
to X.)

5. F(X) = X/SQR(X*X + 1), -10 £ X £ 10, -1 £ Y 1 1.
6. F(X) = (X*X + l)/(X-3 - 4*X), -5 1 X < 6, -4 < Y ± 5.

This function has three vertical asymptotes, so set the
number of plotted points at 240.

7. F(X) - X + 1/X



A . S U P E R * G H R A P H E R 1 9

8. F(X) = X*X - X + 1
9. F(X) - (X-3)/3 - X*X/2 - 2«X + 1/3
10. F(X) = X*3 - 27*X + 36
11. F(X) =X/(X + 1)
12. F(X) = SINU/X), -2 1 Y 1 2, for

a) -5 < X 1 5, b) -1 < X < 2, c) -.5 < X < .3
13. F(X) = X*SIN(1/X), for

a) -1 < X 1 1, -1 < Y £ 1
b) -.2 1X£ .3, -.3 1Y1 .25
c) -.02 < X 1 .03, -.015 < Y 1 .015
d) -2*PI 1X1 3*PI, -.4 1 Y 1 1.2

14. F(X) = SIN(X) + .7*(RND(1) - .5)

Polar coordinates, R » R(T)

15. R(T) = S1N(C1*T), taking CI = 1, 2, 3, 4, . . . What
effect does multiplying the variable T by a number
have? (Take X and Y from -1.2 to 1.2.)

16. R(T) = SIN(T + CI), taking CI = 0, .5, 1, 1.5, . . .
What effect does adding a constant to the variable T
have? (Take X and Y from -1.2 to 1.2.)

17. R(T) = CI + SIN(T), taking CI « 0, 1, 2, . . . What
effect does adding a constant to the function R(T)
have? (Take X and Y from -1.2 to 3.5.)

18. R(T) = SIN(C1*T)*C0S(C2«T), R(T) = SIN(C1«T)*SIN(C2*T),
and R(T) = SIN(C1*T). Different choices of CI and C2
w i l l p roduce " s ta r s , " " flowers , " and "bu t t e r fl i es . "

19. R(T) = 1 + SIN(2*r)*C0S(3*T), 0 1 T 1 2«P1.
20. R(T) = 10/T, taking T from -4 to 12, X from -8 to 20,

and Y from -8 to 8. The curve is a hyperbolic spiral.
21. R(T) = C1*C0S(T). Use different colors to graph R(T)

with CI = +2, -2, +4 and -4, take T from 0 to 3.2, X
from -1 to 5, and Y from -5 to 5. How do the magnitude
and sign of CI affect the graph?

22. R(T) = Cl/(1 - C1*C0S(T)). This is the standard polar
equation for the conic sections. Try CI = .5, .8, 1,
1.4, 2. For positive values of CI less than 1, what
conic section do you get? For CI = 1, what conic



2 0 A . S U P E R * G R A F H E R

section do you get? What conic section do you get by
taking CI greater than 1?

Parametric Equations X » X(T), Y = Y(T)

23. Trochoids: X(T) - C1*T - C2*SIN(T)
Y(T) = CI - C2*00S(T)

Each of these curves can be thought of as the path of a
point (attached C2 units from the center) on a wheel
(of radius CI) that is rol l ing along the X-axis. I f
CI = C2, then the point is on the edge of the wheel,
and the resulting graph (and path) is called a cycloid.
If C2 is greater than CI, then the point can be thought
of as being on a flange that extends beyond the edge of
the wheel, and the resulting path contains loops that
reflect retrograde motion.

24 . Ep icyc lo ids :
X(T) = C1*C0S(T) - C2*C0S(T*C1/C2)
Y(T) - C1*SIN(T) - C2*SIN(T*C1/C2)
Each of these curves can be thought of as the path of a
point on a wheel that is rolling around the outside
edge of another wheel. Nice graphs result when CI is
greater than C2 and C2 divides CI.

25. Hypocvcloids: X(T) = C1*(00S(T))*3
Y(T) = Cl*(SIN(T))<v3

26. Involutes of a c i rc le:
X(T) = C1*C0S(T) + C1«T*SIN(T)
Y(T) = C1*SIN(T) - C1*T*C0S(T)

27. The Witch of Maria Agnesi:
X(T) = C1*C0S(T)/SIN(T)
Y(T) = C1*SIN(T)*SIN(T)

5. FINDING SOOTS AND POINTS OF INTERSECTION
GRAPHICALLY

By inspecting the graph of a function you can sometimes
estimate its roots (points where the graph crosses or
touches the X-axis) or the coordinates of the points where
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it meets another curve. When you wish to use a numerical
root finder or equation solver, it can help to know
beforehand how a function behaves.

To learn more about the location of a root or
rmm intersection point, you can use SUPER*GRAPHER as a

"magnifying glass" to expand a small area of the plane to
fill the entire graphical display.

r=^*^ There is a way to save time and typing when you are
trying to find the points of intersection of the graphs of
two functions, say A(X) and B(X). To avoid retyping the
formulas for A and B every time you change windows, enter
F(X) = C1*A(X) + (1 - C1)*B(X) and then assign CI the values

-— 0 and 1 after each window change. Putting CI = 0 will set
F(X) = B(X), and putting CI = 1 will set F(X) = A(X). Thus,
A(X) and B(X) can be graphed quickly by changing the

^ c o e f fi c i e n t C I .

r^" ' PROBLEMS

SUPER*GRAPHER can sometimes be used to approximate the limit
— of a function F(X) as X approaches a value C by graphing the

function in a neighborhood of C. Use the "magnifying glass"
idea to estimate the following limits.

^ 1 . L i m i t S I N ( X ) / X
X -> 0

^ 2 . L i m i t S I N ( 2 * X ) / ( 3 * X )
X -> 0

3. Limit (1 - C0S(X))/(X + X*X)

4 . L imi t X* ( l /X)
X -> 0 +

SUFER*GRAPHER can sometimes be used to estimate limits
as X approaches infinity by examining the graph of F(X) for
very large values of X. Estimate the following limits by
graphing each function for large values of X.

-*^



2 2 A . S U P E R * G R A P H E R

5. Limit (2*X*X + 5«X + 34)/(5«X«X - 734)
X -> «>

6. L imit (1 + 1/X)aX
X -> «

7. Limit SQR(X + 54) - SQR(X)
X -> «

8 . L i m i t A I N ( X )
X -> «>

6. FINDING MAXIMA AND MINIMA
The techniques of calculus are useful for finding

extreme values (maxima and minima) of functions, and
SUPER*GRAPHER can help check your results. It can also
provide quick preliminary estimates of extreme values.

PROBLEMS

1. Antocatalyt ic react ions: A catalyst for a chemical
reaction is a substance that controls the rate of the

reaction without undergoing any permanent change in itself.
An antocatalytic reaction is one whose product is a catalyst

for its own formation. Such a reaction may proceed slowly
at first if the amount of catalyst present is small, and
slowly again at the end when most of the original substance
us used up. But in between, when both the substance and its
product are relatively abundant, the reaction may proceed at
a faster rate. In some cases it is reasonable to assume
that the rate V = DX/DT of the reaction is proportional both
to the amount X of product and to the amount of the original
substance still present. That is, V may be considered to be
a function of X alone, and V » Cr*X*(C2 - X), where C2 is
the amount of substance at the beginning, and CI is a
posit ive constant.

a) Graph V for CI = 1 and try C2 = 4, 6, 8. Fix CI = 2
and try C2 = 4, 6, 8. How does the location of the
maximum seem to depend on the values of CI and C2?
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b) At what value of X does V have a maximum on the
closed interval from 0 to C2? What is the maximum
value of V?

2. Square box, no top: A CI by CI square piece of
material is to be made into a box with a square base by

cutting an X by X piece from each corner and folding up the
sides. The volume of the box is F(X) = X*(C1 - 2*X)a2, and
X lies between 0 and (Cl)/2. Estimate the value of X that
maximizes the value of F. Try CI = 4, 10, and 20. Where
are the maxima for these values of CI? How does the
location of the maximum depend on CI?

3. Snel l 's Law: According to Fermat 's pr incip le in
optics, l ight fol lows the path of least travel t ime.

Suppose you are interested in the path that a ray of light
traveling in the XY-plane will take in going from the point
P(0,1) to the point Q(2,-l) if the velocity of l ight has the
constant value CI in the medium above the X-axis and the
constant value C2 in the medium below the X-axis. (See
Fig. 1 on the next page.) In either medium, where the
velocity of light is constant, least time means least
distance, and the light travels along a straight line.
Hence the light's path from P to Q will consist of a line
segment from P to a point R(X,0) on the boundary between the
two media, followed by another line segment from R to Q.

According to the formula time - distance/rate, the
travel time from P to R is SQR(1 - X*X)/C1 and the travel
time from R to Q is SQR(4 - (2 - X)*(2 - X))/C2 or
SQR(4*X - X*X). The total time it will take for the light
to travel from P to Q is therefore

F(X) = SQR(1 - X*X)/C1 + SQR(4*X - X*X)/C2.

Graph F for various values of CI and C2 and estimate the
location of R(X,0) that minimizes F(X) in each case. You
might start with CI = 1 and C2 = 1.2. Be sure to
investigate cases in which CI = C2.
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P(0, 1) Medium 1
Velocity CI

\ R(X, 0)

Medium 2
Velocity C2

-▶X

Q(2, -1)

Figure 1. Diagram for Problem 4,

4. Cough: When you cough, your trachea (windpipe)
contracts to increase the velocity of the air you

expel. If CI is the radius of the trachea at rest and X is
the contracted radius, then F(X) = K*(X - C1)*X*X is a
reasonable model for the velocity of the expelled air. Let
K = 1 and estimate graphically the value of X that maximizes
F for various values of CI.
5. Estimate the extreme values of each of the following

functions on the closed interval from 0 to 2*PI.
a. F(X) - SIN(X) + COS(X)
c. F(X) » SIN(X)*C0S(X)

b. F(X) = SIN(X) - COS(X)



B. Name That Function

1. PURPOSE
This program provides experience in working with

parameters in formulas for families of curves.

2. DESCRIPTION

You select a family of linear, quadratic, cubic,
sinusoidal, rational, or exponential functions, and one of
three levels of difficulty. The program then randomly
selects a member of the "family with integer coefficients in a
small range and displays the graph. You are asked to
identify the particular curve shown by finding the values of
the coefficients. The function corresponding to your choice
is then graphed. You are then told whether or not your
choice was correct, and you may try again if it was not. The
correct answer is given after ten incorrect attempts, but you
may ask for it earlier. A score based on the number of
attempts and level of difficulty allows you to monitor your
progress.

3. STEP BY STEP
Load the program from the main disk menu. After

reading the greeting message, press iRbTUKNl to call up the
menu of available functions, shown in Screen 1.

25
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1{AVAILABLE FUNCTIONS)1
1 ... LINEAR
2 ... QUADRATIC
3 ... CUBIC
4 ... SINE
5 ... EXPONENTIAL
6 ... RATIONAL

PRESS THE NUMBER OF THE
FAMILY YOU WANT.

Screen 1. The menu of available functions.

After reading the menu, press Ul to work with sine
functions. A level-of-difficulty menu wil l appear below the
list of function types, as shown in Screen 2. Press |3.|

1{AVAILABLE FUNCTIONS)1
1 . . . LINEAR
^ . . . QUADRATIC
o . . . CUBIC

=> 4 ... SINE
0 . . . EXPONENTIAL
6 • • • RATIONAL

KLEVEL OF DIFFICULTY)1
1 . . . EASIEST
** . . . MODERATE DIFFICULTY

PRESS
=> 3 ... HARDEST

| TO KEEP THESE SETTINGS1 RETURN
OR Icl TO CHANGE THEM
OR iQl TO LEAVE PROGRAM

Screen 2. Having chosen to work with sines, you may
choose one of three levels of difficulty. An arrow
indicates your choice.
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for HARDEST. An arrow will indicate your choice. You may
still change your mind at this point (press |c| to start
over), but to continue the demonstration, press IRkiukMI.

From here on, the pictures on your screen will probably
not agree with ours because the problems are selected
randomly. The pictures that follow, however, show a typical
run through the program.

When we pressed I RETURN I to request a problem, the
computer showed us the graph in Screen 3.

IScreen 3
PROBLEM #1 TRY #1 SCORE = 100

FAMILY: F(X) = A+B*SIN(C*X40)

PRESS A (-3 TO 4) - 2
IclHANGE VALUES B (-3 TO 3) = 3
|T|EST VALUES C (-2 TO 2) = 1
IrIEVIEW OLD TRY D (-2 TO 2) = 1
IsIee answer/stop

Our task was to choose the values of the parameters A,
B, C, and D that would make the graph of the function
F(X) = A + B*SIN(C*X + D) match the graph on the screen. In
this program, the correct values are always integers. The
default values of the parameters (the values that first
appeared on the screen) were all l's. We changed the value
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of A to 2 by pressing |c| followed by III I RETURN I. After
that, we changed the value of B to 3 by pressing |3_|
IRETURNI. We then pressed two more IRETURNIs to accept the
default values for C and D. This produced the values and
message shown in Screen 3 on the previous page.

IScreen 4
PROBLEM #1 TRY #2 SCORE = 100

FAMILY: F(X) = A+B*SIN(C*X-H))

PRESS
IcjHANGE VALUES
IllEST VALUES
IrJevtew old try
ISlEE ANSWER/STOP

A (-3 TO 4) » -3
B (-3 TO 3) =3
C (-2 TO 2) =1
D (-2 TO 2) - 1

l*WRONG*l

We then pressed |t| to test our parameter choices, and
when the computer displayed the graph of

F(X) = 2 + 3*SIN(X +1),
the function determined by our parameter choices, it also
displayed the message "WRONG."
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We then changed the value of A to -3 by pressing |c|
PI |JI IRETURNI, kept the displayed values of the other
parameters by pressing IrETJDRNJs, pressed |t| again, came up
wrong once more (Screen 4), and pressed |s| to see the
correct parameter values for the problem, shown in Screen 5.

PROBLEM #1 TRY #3 SCORE = 94

FAMILY: F(X) = A+B*SIN(C*X-H))

_ P R E S S A ( - 3 T O 4 ) = 1
IaJnOTHER PROBLEM B (-3 TO 3) =3
iMlENU OF TYPES C (-2 TO 2) =1
i Q l U T T D ( - 2 T O 2 ) = 1

ICORRECT ANSWERS I

IScreen 5

We then pressed |M| to return to the function menu and
chose quadratic functions by pressing |2|. Screens 6, 7,
and 8 show a quadratic problem we got right on the third
t r y .
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PROBLEM #1 TRY #1 SCORE = 100

family: F(x) = a*x*x-**x-k:

press IreturnI to a (-2 to 2) = 1
keep a value or b (-4 to 4) = 2
type a new value c (-4 to 4) = 1
and press IreturnI I* wrong «l

IScreen 6

PROBLEM #1 TRY n SCORE = 94
IScreen 7

f t r -H 1 \—*k 1 1,1

family: f(x) = a*x*x«*x4c
press IreturnI to a (-2 to 2) = 1
keep a value or b (-4 to 4) = -4
type a new value c (-4 to 4) - 1
and press IreturnI I* wrong «l
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IScreen 8
PROBLEM #1 TRY #3 SCORE = 88

A-»-
\ '■•.

: x/
■

7<:
.1* ■ •..••■

FAMILY: F(X) = A*X*X4B*X+C

press IreturnI to
keep a value or
type a new value
and press IreturnI

A (-2 TO 2) =1
B (-4 TO 4) =4
C (-4 TO 4) = 1

I* RIGHT *l

4. THE KEY-PKESS OPTIONS
Now work your way through a problem on your own.

each try, you have the following options:
For

Icl
lf|

iRl

HI

Lets you change the coefficients.
Graphs your function and compares it with the displayed
function. If the graphs match exactly, you are correct
and may try another problem (press |A|), try another
family (press |m|), or quit (press Igl).
Lets you see the graphs and coefficients of any earlier
tries (after pressing |r|, enter the try number and
press I re turn I ) .
Lets you see the correct answer. Pressing |S| also
calls up the |A|-|M|-|Q|options.



C Secant Lines

1. PURPOSE AND DESCRIPTION

By a visual presentation of the limiting process, this
program reinforces the idea that the tangent line at a point
on a curve is a limit of secant lines. As you command the
program to draw secants that approach a tangent through a
selected point on a function's graph, the screen also shows
the slopes of the secants in a numerical display. The program
accepts any of the standard functions from calculus, and
offers a menu of functions like SIN(X), ABS(X*X - 4) + 3,
and INT(X) for initial experimentation.

2. STEP BY STEP
Load the program from the main disk menu, read the

greeting message, and press I RETURN I to display the menu of
available functions, shown on the following page. The
examples in this chapter all start from the function menu.

Le 1. A Differentiable Function: F(X) = SIN(X)
Press |2| on the function menu to call up the current

settings menu for F(X) = SIN(X). This menu enables you to
set the stage by choosing the point (XO,F(XO)) through which
the secant lines will all pass and at which you wish to
explore the question of whether a tangent line exists.

33
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1 {AVAILABLE FUNCTIONS) I

1 . . . DEFINE YOUR OWN
** % * • SIN(X)
O a a a X*X-4
4 . . . X*X-4*X+4
0 a a a 2*(X*3)-3*(X*X)-12*X
6a a a SQR(25-X*X)
7 . . . ABS(X)
Oa a a ABS(X*X-4)+3
9 . . . INT(X)

PRESS THE NUMBER OF THE
FUNCTION YOU WANT.

Screen 1. The function menu.

1 {CURRENT SETTINGS) I

F(X) = SIN(X)
XMTN = -4 YMTN » -2
XMAX = 3 YMAX = 2

XO = 0 F(X0) = 0

TO KEEP THESE SETTINGSPRESS IRETURNI
IHcl TO CHANGE SETTINGS
HI TO CHANGE F(X)

HI TO QUIT

Screen 2. The current settings menu.
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The current settings menu also enables you to set the X
and Y boundaries of the viewing window that will appear on
the graphics screen. The program will not accept values of
XO that lie outside the interval XMIN < XO <. XMAX. If
you enter an unacceptable value, the program will tell you so
and give you an opportunity to redefine XO or change the
graphing window.

The program will warn you if you choose a value of XO at
which F is not defined, and give you an opportunity either to
change XO or define F(X0), as in Example 4.

Press IrETTJRNI to keep the current settings. The screen
will go blank. Then, in order of appearance, you will see
coordinate axes, the graph of F(X) = SIN(X), the secant line
through the points (XO, F(X0)) = (0,0), and the point
(X0,F(X0 + H)). The point (0,0) will be enclosed in a small
square and the point (X0,F(X0 + H)) marked with a crosshair.
Numerical information and operating instructions will appear
at the bottom of the screen. When the display is complete,
it will look like the one in Screen 3.

X O H ( F ( X O * fl ) - F ( X 0 ) ) / H
0 1 . 8 2 1 1 3 8 . 5 3 1 9 9 0 2 5 5

P r e s s | J | < - - > | k | I fl A N G E N T | c | L E A R | m | E N U

Screen 3. The sine curve and initial secant line,
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You can move the crosshair left or right along the graph
in small steps by pressing I <^| or |^> I, and in larger steps
by pressing |j| or |k|. Try all four. The arrow keys are
particularly useful for homing in on a point once you are
nearby. The secant line will be redrawn after each keypress.
Watch the display of the numerical values of H and the secant
slope change as the crosshair moves.

X O H ( F ( X 0 4 fl ) - F ( X 0 ) ) / H
0 . 9 6 7 4 7 9 . 8 5 1 1 3 7 6 2 9

P r e s s | j | < - - > I k | I t I a n g e n t I c I l e a r I m I e n u

Screen 4. Pressing |j| once changes the display
shown in Screen 3 into the one shown here.

After you have experimented with moving the secant line,
move it to the position shown in Screen 5. Then press |T| to
display the tangent line.

Now move the crosshair to the origin. The secant line
will disappear from the screen, although the tangent line
will remain in place. Also, the word "UNDEFINED* will appear
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SLOPE OF TANGENT LINE = 1
X O H ( F ( X O + H ) - F ( X O ) ) / H

0 - 2 . 1 0 5 6 9 2 . 4 0 8 5 7 0 0 4 7

P r e s s I J I < - - > I k | I t I a n g e n t I c I l e a r I m I e n u

Screen 5. The tangent line may be added to the
display at any time.

in place of the numerical secant slope display. The tangent
slope is defined at XO = 0 (it equals 1) but the difference
quotient (F(XO+H) - F(X0))/H is no longer defined now that
H = 0.

If you wish to remove the tangent line from the picture,
press |c| for "CLEAR." The computer will respond by
redrawing the graphics display in its original state.

Now press |m| to return to the current settings menu
(Screen 2), and press |f| to return to the function menu
(Screen 1) for a new function.

Example 2. A Discontinuous Function: F(X) = INT(X)
Starting out from the function menu (Screen 1), press

|?l to select F(X) = INT(X), the greatest integer function.
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Then press I RETURN I to accept the default values of XO and
the other parameters. When the graph appears, watch the
secant lines as you move the crosshair to the position shown
in Screen 6.

Screen 6. A discontinuous function.

Now press |T| to call for the tangent to the graph of
F(X) = INT(X) at the point (2,2). There is no tangent to the
graph at the point (2,2), as indicated by the message

SLOPE OF TANGENT LINE = UNDEFINED
Return to the function menu, when you are ready, by

pressing |M| and then |F|.

Le 3. A Continuous Function with a Singular Point:
F(X) = ABS(X)

Starting from the function menu in Screen 1, press |7.|
to select the absolute value function F(X) = ABS(X). Then
press IRETURNI to accept the displayed current settings and
request the graph.
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SLOPE OF TANGENT LINE = UNDEFINED
X O H ( F ( X O + H ) - F ( X O ) ) / H
0 1 . 3 0 0 8 1 3 1

Press | J |< - -> |K | iT lANGBJT |C |LEAR |m |ENU

Screen 7. The graph of F(X) = ABS(X) has no
tangent at the origin.

Experiment with secant lines through points to the right
and left of (XO, |XO|) = (0,0). They are all extensions of
the two "branches" of the function's graph.

Return the crosshair to its original position, shown in
Screen 7, and press |T| to request the tangent line to the
graph F(X) = ABS(X) through the origin. As in Example 2, the
program will respond by adding the words

SLOPE OF TANGENT LINE = UNDEFINED
to the display.

Now press |m| and then |f| to return to the function
menu for the next example.
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Example 4. A Removable Discontinuity:

F(X) = X*SIN(1/X)

Starting from the function menu (Screen 1), press llj.
When the prompt

TYPE YOUR FUNCTION AND PRESS I RETURN I

appears, press

III 1*1 III III InI III III IZI III III \mm\
to enter F(X) = X*SIN(1/X). Then press l|SC|. When

XO = 0
is displayed, press I RETURN I to accept it. The line

F(X0) = UNDEFINED
will appear almost immediately. Press lol I RETURN I to define
F(X0) to be zero. With F(X0) so defined, the function
entered into the computer is the continuous function

[ X * S I N ( 1 / X ) , X * 0F(X) = I
1 0 , X = 0 .

Now press I ESC I once more to enter the window
parameters. The program will ask you to reconfirm your
choice of values for XO and F(X0), so begin by pressing
iRl&tUKrtl to accept XO = 0 when it appears, and then reenter

F(X0) = 0 by pressing |o| I RETURN I. This clears the way for
the window parameters to appear. When they do, enter

XMIN = -.2 XMAX = .4 YMIN = -.25 YMAX = .25

Finally, press IReiukNI to see the graph shown in Screen 8.
For practice, move the crosshair to the position shown

in Screen 8.
Press \<-\ repeatedly to move the crosshair to the

origin, watching the erratic behavior of the secant line.
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F(X) = X*STN(1/X)

---A
/ V ft'lW/ \jwa v V \ /

1 \ J\ j T '^ . j T ,

X O H ( F ( X ( H fl ) - F ( X O ) ) / H
0 . 1 7 5 6 0 9 - . 5 5 5 3 1 4 3 1 5

P r e s s | j | < - - > | k I I t I a n g e n t I c I l e a r I m I e n u

Screen 8. The graph of the continuous extension of
F(X) = X*SJN(1/X) contains the origin.

The values displayed for the secant's slope will vary from
close to -1 to nearly +1. (If the crosshair were moving
continuously, the values -1 and +1 would actually be taken
on.)

Next, press |T| to request the tangent line through the
origin. As you might expect from the secant's behavior, the
secant never settles down as H->0, and no tangent exists at
the origin. The continuous extension of F(X) = X*SIN(1/X) to
the or igin is not di fferent iable there.

In contrast, the continuous extension of the function
F(X) = X*X*SIN(1/X) to the origin is different iable at
XO = 0, and Problem 9 will ask you to explore the behavior of
the secants to its graph through the origin as H->0.
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3. SLOPE OF TANGENT LINE = UNDEFINED(?)

The program SECANT LINES estimates the slope of the
tangent line by computing the ratio (F(X0 + H) - F(X0))/H
for two small values of H, namely H = -.0000002 and
H = .0000002. If the two values of the ratio obtained this
way are close (absolute difference less than .0001) the
program reports the slope of the tangent line to be the
average of the two values. For many functions this average
is a useful approximation, but two things can go wrong:

i) Since the program is dividing by such small values of
H, round-off and truncation can be a problem,

ii) If the values of the ratios obtained from H = -.0000002
and H = .0000002 are more than .0001 units apart, then
the program reports that the slope of the tangent line
may be undefined. This may look like a handy way to
detect undefined derivatives, but a differentiable
function with a very steep graph, say a slope of
magnitude 10,000 or more at XO, will be presented as a
function that may have no tangent line at XO (as in
Example 5), while a function that has acceptable ratios
for these small H's will be assigned a tangent line
even if it has no derivative at X0 (as in Problem 10).

Example 5. An inconclusive report on the function
F(X) = EXP(X+10).

Press Ul on the function menu and enter the formula
for F(X) = EXP(X + 10). When Screen 2 comes up press I ESC I
and enter the following parameter settings:

XO = 0
XMIN = -4
XMAX = 2.5
YMIN = 500
YMAX = 45000

Press IRETURNI to display the graph. Experiment with
secants for a bit, if you wish, then ask for the tangent.
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Screen 9 shows what appeared after we pressed |j| four times
and then pressed |T|.

F(X) =■ EXP(X+10)

f ■■ •
/ l » *

SLOPE OF TANGENT LINE - UNDEFINED(?)
XO H (F(XO+H)-F(X0))/H
0 -1.479675 11496.2972

Press | j | < - ->HI ItIangent IcIlear ImIenu

Screen 9. There is a limit to how steep a slope
the program can handle. When this limit is
exceeded, the computer reports that the slope you
requested may be undefined.

The trade-off. To enable you to enter your own functions,
and not limit you to a preselected list, it was necessary
for the program to contain a general secant slope estimator.
Slope estimators can be fooled, but we felt that the ability
to enter a variety of formulas outweighed the possible
d i f fi c u l t i e s .
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PROBLEMS
In Problems 1-3, use SECANT LINES to observe the
convergence of the secant lines to the tangent lines. For
each function, build a table of values of the slopes of the
secant lines as the crosshair moves along the graph of F(X)
toward the point (XO,F(XO)), i.e., as H approaches 0.
1. F(X) = SIN(X) (#2 on the function menu)
2. F(X) = X*X - 4 (#3 on the function menu)
3. F(X) = 2*X 3 - 3*X*X - 12*X (#4 on the function menu)

In Problems 4-8, use SECANT LINES to estimate the slope of
the line tangent to the graph of F(X) at the point
(X0,F(X0)) for the indicated values of XO.
4. F(X) = X*X. Take XO = 0, 1, 2, 3, -1, -2, 0.5, 0.7,

and 1.5. What is the pattern?
5. Put F(X) = X*3. Take XO = 0, 1, 2, 3, -1, -2, -3, 0.5,

and 0.7. What is the pattern?
6. F(X) - L0G(X). Take X0 = 1, 1.5, 2, 3, and 5.
7. F(X) = EXP(X). Take XO = 0, 1, and 2.
8. F(X) = SIN(X). Take XO - 0, PI/4, PI/2, PI, and 2*PI.

9. Repeat the steps of Example 4 with the function
F(X) = X*X*SIN(1/X). Use X0 = 0, F(X0) = 0,
XMIN = -.07, XMAX = .12, YMIN = -9E-03, and YMAX = 8E-
03.

10. (A continuation of the discussion at the beginning of
Section 3.) To see an example of a function whose
graph will be assigned a tangent line at a point where
the function is not different iable, enter
F(X) = ABS(X)/1E10 and accept the program's default
parameter settings (with X0 = 0). The graph will
appear as a straight line lying along the X-axis. When
the display is complete, press |t| to see what happens.
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1. PURPOSE
This program provides practice in determining when

limits exist and in finding them when they do.

2. DESCRIPTION
The program generates limit problems from a menu that

includes polynomials, rational functions, roots, absolute
values, infinite l imits, and indeterminate forms. The
program displays a limit problem and asks for the answer in
the form of a number (e.g. 3, 1.5, or -4/5), an expression
(e.g. SQR(5/7)), I or - I ( for +/- infinity), or U (for
undefined). The computer responds "RIGHT" for a right
answer, and "WRONG" plus a hint for the first wrong answer.
After two wrong answers, the computer displays the correct
answer and the cumulative score of right answers as a percent
of problems tried, and asks if you want another problem.

3. STEP BY STEP
Load the program from the main disk menu, read the

greeting message, and press I RETURN I to display the menu of
problem types (Screen 1).
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{MENU OF PROBLEM TYPES>

1. POLYNOMIALS
2. RATIONAL FUNCTIONS
3. ROOTS
4. ABSOLUTE VALUES
5. INFINITE LIMITS
6 .
7.

INDETERMINATE FORMS
A MIXTURE OF TYPES

8. QUIT

PRESS THE NUMBER OF THE
PROBLEM TYPE YOU WANT.

Screen 1. Menu of problem types.

Typical problems are:

Polynomial:

Rat ional :

L im i t _y2 + _ 5
y->-3

Root:

Absolute value:

I n fi n i t e l i m i t :

L im i t 5*T2 + 2*T
T->0 3*T3 - 2*T2 - T

L im i t
y->25

5 -
25 - y

L im i t l y - 5l
y - > 5 3 * y - 1 5

L i m i t \ / ( 2 5 * x + 2 ) / ( 6 4 * x - 4 )

Inde termina te fo rms: L i m i t c o s ( - 2 » y ) - l
y - > 0 2 * y

L i m i t c o s ( - 4 / T ) ) X T
T->»
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If you press any of the keys |lj - |6|, the program
will generate problems of the kind you choose. Mixtures of
these programs are also available, and you may choose your
own mixture by pressing IV.I •

The problems listed above are samples of each type.
There are several patterns within each type, and literally
bi l l ions of di fferent problems.

Press 17.1 to display the mixture menu.

<MENU OF PROBLEM TYPES>

1 1. POLYNOMIALS
2. RATIONAL FUNCTIONS
3. ROOTS
4. ABSOLUTE VALUES
5. INFINITE LIMITS
6. INDETERMINATE FORMS

|Y| to include a type in the mix
lN| to exclude a type from the mix.

Screen 2. The mixture menu.

After reading the mixture menu, press |y| or |N| at
each option to make your selection.

The screens that follow are selected from a run we took
through the program after we pressed |Y| six times to allow
all types to be present in the problem mixture. Since the
program generates problems randomly, your own excursion
through the program is not likely to yield any of the
examples shown here. These examples will, however, give you
an idea of what to expect.

The first problem the computer displayed is shown in
Screen 3. We deliberately gave a wrong answer. The
computer responded with a hint (Screen 4). We then gave the
right answer. The computer acknowledged, and displayed our
score as .5 right out of 1 problem tried, or 50%.
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1) L i m i t
y -> -3

3*v + 10
3*y + 6

Your answer should have the form—
number . . . . 3 or 1.5 or -4/3
expression . . SQR(5/7) or EXP(l)
I o r - I . . . + / - I N F I N I T Y
U . . . . . . U N D E F I N E D

1) Limit 3*v + 10
y->-3 3*y + 6

= 10/6 I WRONGI

IfflNTl THE LTMTT OF THE DENOMINATOR
IS NOT ZERO SO JUST EVALUATE
THE FUNCTION.

1) Limit 3*v + 10
y->-3 3*y + 6

= 1 0 / 6 I W R O N G I
- - 1 / 3 I R I G H T I

IhtniI THE LIMIT OF THE DENOMINATOR
IS NOT ZERO SO JUST EVALUATE
THE FUNCTION.

IScreen 1

IScreen 2

IScreen 3

.5 RIGHT OF 1 TRIED = 50%
Press IaInOTHER |m|ENU OR lolUTT

Screens 1-3 above show the progress through a problem
answered incorrectly at first, and then correctly.

As the displays in Screens 1-3 suggest, the program
always gives you two chances to answer. After that you may
choose another problem (press |A|), change problem types
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(press |M| for the problem type menu), or leave the program
(press |Q | fo r "qu i t " ) .

The next screen sequence shows how the program handles
an improper input (Screen 4) and gives hints (Screens 5-8).

2) L imi t 3*v^ + 12»v + 9
y->-3 9*3^ + 57*y + 90

- 0/0

* THE PROGRAM CANNOT INTERPRET YOUR *
* ANSWER. PLEASE ANSWER AGAIN. *

IScreen 4

2) L im i t 3»v* + 12*v + 9
y->-3 9*^ + 57*y + 90

= 1 / 3 I W R O N G I

IScreen 5

I HINT I THE NUMERATOR AND DENOMINATOR BOTH
APPROACH ZERO. TRY TO FACTOR
AND SIMPLIFY.

8 ) L i m i t - 3 » i ^ + T - 1
T->-» 30T2 + 3*T + 9

= I I W R O N G I

I HINT | FACTOR T2 FROM THE
NUMERATOR AND DENOMINATOR.

IScreen 6
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IScreen 7
1 0 ) L i m i t ( 1 - 3 / y ) / ^ y

y->»
= 0 I W R O N G I

I HINT I '1 oo' INDEIERMINATE FORM
REWRITE F*G AS EXP(G*LOG(F))
AND FIND THE LIMIT OF G*LOG(F).

IScreen 8
11) Limit C0S(2*x) - 1

x - > 0 6 * x
= 2 / 6 I W R O N G I

iHTNfl THE NUMERATOR AND DENOMINATOR
BOTH APPROACH ZERO. APPLY
L'HOPJTAL'S RULE. (0/0 CASE)

Screens 4-8 show typical hints and error messages.



E. Limit Definition

1. PURPOSE
The e-£ definition of limit is concise and powerful.

But it is highly symbolic, and may be difficult to understand
at first. The program LIMIT DEFINITION enables you to work
with the definition graphically to help you interpret the
symbols and understand what the definition really says.

2. THE DEFINITION OF LIMIT
Here is the formal definition of what it means for a

real valued function F of a real variable X to have a limit
L as X approaches a number C.

Defin i t ion o f L imi t
The limit of F(X) as X approaches C is the number
L i f :

For every e > 0 (radius about L) there exists a
8 > 0 (radius about C) such that for all X

0 < IX - C| < 8 implies |F(X) - ]L| < 8.

51



5 2 E . L I M I T D E F I N I T I O N

In symbols, we write

l i m F ( X ) = L
X->C

to say "the limit of F(X) as X approaches C equals L."

3. DESCRIPTION
The general pattern of the program is "given a function

F(X), a point C, a suspected limit L as X->C, and an e > 0,
find a 8 tha t sa t isfies the l im i t defin i t ion . " The
definition requires that for each positive epsilon there be
a corresponding delta — your job in using this program is
to find one graphically. If one value of 8 satisfies the
definit ion, then any smaller posit ive value wi l l sat isfy i t
as well. Thus, your job is really to find any one of a
whole interval of suitable values. You should also look for
the largest del ta that sat isfies the defini t ion.

LIMIT DEFINITION is entirely graphical, and requires no
calculation on your part. In preliminary tests of the
program, most users reported that it did help them "see"
what the definition said. The program will not help you
calculate the value of L in a particular limit problem,
however, nor will it help you find a numerical value of 8
for a given e. But it should give you insight that will be
helpful as you solve numerical problems elsewhere.

4. STEP BY STEP
Select the program LIMIT DEFINITION from the main

disk menu (it takes about fifty seconds to load) and press
IRETURNI when you have read the greeting message and are
ready to begin.

The computer will graph a function, label a point C on
the X-axis and a point L on the Y-axis, and select a value
of e > 0. It will also draw horizontal dotted lines through
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the points L + 8 on the Y-axis, choose a 8 > 0 at random,
and draw a pair of dotted vertical lines through the points
C + 8 on the X-axis. The display should look something like
the one shown in Screen 1.

d e c r e a s e &

i n c r e a s e 6

t e s t - 6

I o o k a t
l a r g e s t &

* Hs t o p
C - 6 C + 6

D E F I N I T I O N F o r e a c h £ > e t h e r e i s a S > 8s u c h t h a t
0 < I X - C I < 6 = » I F < X > - L I < e .

Screen 1. Find a 8 for the given e. Note the gap
in the graph above the point C, a value excluded
from considerat ion in the l imit definit ion.

It is up to you to find a value of 8 that satisfies the
limit definition for the given C, F, L, and 8. The 8 shown
on the screen, which was chosen at random, may satisfy it
already. If not, you can decrease 8 by pressing l<^J. You
can also increase 8 (which you might do to find the largest
suitable 8). You can proceed more quickly by holding down
either arrow key (along with the IrEPTI key, if necessary)
or take larger steps by pressing |jI or |k|.

When you think you have a 8 that satisfies the
definition, press |T| to test it. The values of X between
C - 8 and C + 8 (except for C itself) will be mapped by rays
up to the curve and over to the Y-axis, and you can see if
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all of the function values F(X) lie between L - e and L + e.
A message from the computer will confirm what you see by
telling you whether your 8 is satisfactory and why. For
instance, if your 8 fails the test, your next display will
look something like the one in Screen 2.

hU*S F < X > = L

t r y a g a i n

n e uf u n c t i o n

n e u
e p s i I o n

Stop .L e a v e
p r o g r a m

N O ! F o r t h i s 6 a n d y o u r 6 t h e r e i s a n Xs u c h t h a t 0 < I X - C I < 6 a n d I F < X > - L I > G .Y o u r 5 i s t o o b i g .

Screen 2. Testing a 8 that is too large.

You now have four choices:
IAI Try again with the same value of 8. The graph will

reappear as it was before you pressed |T| •
|e| Change the value of 8.
|f| Try a new function.
Igl Quit the program and return to the main disk menu.
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If you cannot find a value for 8 that satisfies the
definition, or if you cannot find the largest such 8, just
press |L|. If the function has a limit as X->C, then the
largest 8 that satisfies the definition for the given 8 will
be shown. However, several functions in the program's
inventory have no limit as X approaches certain values of C,
and some e's will have no corresponding 8 in these cases.

5. EN00DNIERIN6 A POINT OF DISCONTINUITY
Screens 3, 4, and 5 show what can happen when you

encounter a function that has no limit as X->C.

L i m i t F O O = LX—▶ C

L + 6

L

L - e

c+&

d e c r e a s e &

i n c r e a s e S

t e s t 5

1ooR a tl a r g e s t B

s t o p

D E F I N I T I O N F o r e a c h 6 > © t h e r e i s a 5 > 8s u c h t h a t
Q < I X - C K . S = ^ I F < X > - L I < 6 .

Screen 3. This function has no limit as X->C.
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^ i m i t F < X > = L
GOt r y a g a i n
mn e uf u n c t i o n

n e ue p s i I o n
HStop .L e a v e

p r o g r a m
C - S C C + £

T h i s F < X > h a s N O L I M I T a s X — > C .
F o r e a c h § > 0 t h e r e < a r & X s u c h t h a t

0 < I X - C K S a n d ! F < X > - L I > 6 .

Screen 4. No positive delta is small enough.

L i M i t F < X > = L

L+e

L~e

i n i i i i i i i i fi i i i i i i i i i i i i i i i i i i i i i i i i i i

~ ' i i i i i i iHi i i i i i i ini i i i i i i i i i i i i i i

C - £ C C + 6

t r y a g a i n
mn e uf u n c t i o n

n e u
e p s i 1 o n

&S t o p .L e a v e
p r o g r a m

N O ! F o r t h i s 6 a n d y o u r & t h e r e i s a n Xs u c h t h a t 0 < I X - C I < 6 a n d I F < X > - L I > 6 .
Y o u r 5 i s t o o b i g .

Screen 5. The response to a request for a largest
delta when no limit exists.
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6. SUCCESS AT LAST

h ^ h F < X > = L

C + £

63t r y a g a i n
mn e uf u n c t i o n
an e u

e p s i I o n

S t o p .L e a v e
p r o g r a m

GOOD ! F o r t h i s 6 a n d y o u r &
0 < I X - C I < 6 = ^ I F C X > - L I < e .A l a r g e r 6 w i l l a l s o w o r k

Screen 6. A suitable delta for the problem,
though not the largest delta.

GOOD !

C - £ C C + 6

t r y a g a i n
mn e uf u n c t i o n
mn e u

e p s i 1 o n

S t o p .L e a v e
p r o g r a m

F o r t h i s 6 a n d y o u r S0 < I X - C I < 6 = ^ I F C X > - L I < GN o l a r g e r S u i l l w o r k .

Screen 7. The largest delta for this problem.
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7. A PLEASANT SURPRISE
The program contains fifty combinations of F and C.

You may ask for them by number (1 - 50) from any screen that
has the |f| option (for example, Screen 2). Instead of
requesting one of the options offered by the screen, press
M. The prompt

TYPE NUMBER OF FUNCTION: _

will appear at the bottom of the screen. To try this out,
go to Screen 2, press 1*1, and then press |?l l?f I RETURN I
to see what happens.



F. Continuity at a Point

1. PURPOSE
This program provides practice with the three-condition

definition of continuity of a function at a point, with multi
l ine function definit ions, and with one-sided l imits.

2. DESCRIPTION
A function is defined on the screen by a two- or three-

line definition and you are asked if the function is
continuous at a particular point (Y or N). If your answer is
correct, you may then see the graph, ask for another problem,
or quit. If your answer is incorrect, you are led through
the three conditions of the definition of continuity:

Is the function defined?
Does the limit exist?
Does the limit equal the function value?

The program then describes the continuity or discontinuity of
the function in terms of the (correct) responses to these
questions. The function's graph is available only after the
three questions have been answered. After looking at the
graph you may review the conditions, request another problem,
or quit. The computer keeps score as you go along.
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3. THE TEST FOR CONTINUITY AT A POINT
A real valued function F of a real variable X is

continuous at a point C if it passes the following test:

The Continuity Test
The function Y = F(X) is continuous at X = C if
and only if all three of the following statements
are true:

1. F(C) exists (C lies in the domain of F).
2. l imx_>cF(X) exists (F has a l imit as X->0).
3 . l imx_>cF (X ) - F (C ) .

In this test, the limit is a two-sided limit if C is an
interior point of the domain of F; it is the appropriate
one-sided limit if C is an endpoint of the domain.

To have a two-sided limit at an interior point C of its
domain, a function F must have equal left-hand and right-
hand l imits at C. That is, the left- and right-hand l imits

l imx_>c_F(X) and l imx_>c+F(X)
must exist at X = C and be equal. For F to be continuous at
X = C, not only must these limits exist and be equal, but
also F(X) must be defined at X = C and F(C) must equal the
common value of these limits.

Example 1. For the function Y = F(X) graphed in Fig. 1 we
have the following results:

a) F is continuous at X = 0 because
1. F(0) ex is ts ( i t equa ls 1 ) ,
2. limx_>0+F(X) = 1 (F has a limit as X->0+),
3. limx_>(>4.F(X) = F(0) (the limit equals the

function value).
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Y = F(X)

J 1 ' ▶ X
1 2 3 4

Figure 1. The function Y = F(X) graphed here it
discontinuous at X = 1 and X = 2.

* ^ b) F is not continuous at X = 1 because limx v*F(X)
fa i ls to exist . The funct ion fa i ls condi t ion (2) of
the test. (The right-hand and left-hand l imits exist
at X = 1, but they are not equal.)

c) F is not continuous at X = 2 because limx V2F(X) £
F(2). The funct ion fai ls condit ion (3) of the test.

d) F is continuous at X = 3 because
1 . F (3 ) ex is ts ( i t equa ls 2 ) ,
2. limx_>3F(X) = 2 (F has a limit as X->3),
3. l imx_>3F(X) = F(3) ( the l imit equals the

function value).
e) F is continuous at X = 4 because

1. F(4) ex is ts ( i t equa ls 1 )
2. limx_>4^F(X) = 1 (F has a limit as X->4),
3. l imx_>4r_F(X) = F(4) (the l imit equals the

function value).

To test for continuity, we always ask three
questions:

1 . D o e s F ( C ) e x i s t ?
2 . D o e s l i m x _ > c F ( X ) e x i s t ?
3 . Does l imx_>cF(X) = F (C)?

For F to be continuous at X = C, all three answers must be
yes.
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4. STEP BY STEP
Load the program, read the greeting message, and press

IRETURNI to request a problem. The problem will have a
problem number (in this case (1) because it is your first)
and the program will wait for you to answer the question

IS F(X) CONTINUOUS AT X = <some number)? (Y/N)
with a yes or no by pressing |y| or |N|.

The program selects problems randomly, so your problem
sequence will probably not be exactly like the one that
follows here. However, press |y| or |N| when your first
problem comes up, and go on to see what happens.

Here is a record of what happened when we started
through the program while writing this chapter.

The first problem to come up was:

pmm*)

f1) F(X)= J-l - 2*X IF X t -2
IF X = -2

I WRONGI
IS F(X) CONTINUOUS AT X = -2? (Y/N) III

1. IS F(-2) DEFINED? (Y/N) |y| I RIGHT I
F(-2) = 2

IRIGHTI
2. DOES LIM(X->2) F(X) EXIST? (Y/N) Iy|

LIM(X->-2-) F(X)= 3 SO LIM(X->-2) F(X)
L I M ( X - > - 2 + ) F ( X ) = 3 = 3
3. DOES LDf(X->-2) F(X) = F(-2)? (Y/N) lf|

3 * 2 I W R O N G I

F(X) DOES NOT SATISFT CONDITION 3, SO
F(X) IS NOT CONTINUOUS AT X = -2

Press lAlnother or |G_|raph or lojuit
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After learning what we did wrong, we pressed |A| to
request another problem:

SCORE! 0 RIGHT OF 1 TRIED = 0 %
2) F(X)= f-3 - X«X IF X < 1

- 2 I F X = 1
1 I F X > 1

I WRONG1
IS F(X) CONTINUOUS AT X = 1? (Y/N) |Y|

1. IS F(l) DEFINED? (Y/N) |y| I RIGHT I
F(l) = -2

IWRONGI
2. DOES LIM(X->1) F(X) EXIST? (Y/N) |y|

LIM(X->1-) F(X)= -4 SO LIM(X->1) F(X)
LTM(X->1+) F(X)= -2 = UNDEFINED

F(X) DOES NOT SATISFY CONDITION 2, SO
F(X) IS NOT CONTINUOUS AT X - 1

Press |A|nother or |G_|raph or Ipjuit
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After this mistake, we pressed |G| to view the graph:

SCORE: 0 RIGHT OF 1 TRIED = 0 %
2) F(X)= f-3 - X*X IF X < 1

- 2 I F X = 1
.1 - 3*X IF X > 1

I WRONGI
IS F(X) CONTINUOUS AT X = 1? (Y/N) |y|

i h - - t 1 1 1 1

k \
F(X) DOES NOT SATISFY CONDITION 2, SO
F(X) IS NOT CONTINUOUS AT X = 1

Press |A|nother or I Conditions or lojuit
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We answered the next problem correctly, and asked for
the graph:

SCORE: 0 RIGHT OF 2 TRIED = 0 %
3) F(X)= flNT(X + .5) IF X * 4

| 4 I F X = 4
IS F(X) CONTINUOUS AT X = 1? (Y/N) jf[

IRIGHTI

i 1 1 - H 1 1 1 1 1

Press Ulnother or Iclonditions or lojuit



66 f. coNTiNurry at a point

We answered the next one incorrectly . . .

SCORE: 1 RIGHT OF 3 TRIED = 33.3%
4) F(X)= /l + ABS(X + 2) IF X * -1

IF X = -1( ! •
I WRONGI

IS F(X) CONTINUOUS AT X = -1? (Y/N) |j|

1. IS F(-l) DEFINED? (Y/N) lY| IRIGHT I
F(-l) = 3

IRIGHTI
2. DOES LIM(X->-l) F(X) EXIST? (Y/N) |Y|

LIM(X->-l-) F(X)= 2 SO LIM(X->-l) F(X)
L I M ( X - > - l + ) F ( X ) = 2 = 2
3. DOES LBf(X->-l) F(X) = F(-l)? (Y/N) |f|

2 * 3 I W R O N G I

F(X) DOES NOT SATISFY CONDITION 3, SO
F(X) IS NOT CONTINUOUS AT X = -1

Press U lnother o r |G| raph or lo ju i t
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and asked for the graph:

SCORE: 0 RIGHT OF 3 TRIED = 33.3%
4) F(X)= fl + ABS(X + 2) IF X * -1

\ 3 I F X = - 1
I WRONGI

IS F(X) CONTINUOUS AT X = -1? (Y/N) |y|

F(X) DOES NOT SATISFY CONDITION 3, SO
F(X) IS NOT CCNTINUOUS AT X = -1

Press |A|nother or Iclonditions or loluit
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The next problem was about the behavior of a function
at the left-hand endpoint of its domain. We answered it
correctly, and asked to see the graph:

SCORE: 2 RIGHT OF 6 TRIED = 33.3%
7) F(X)= f3 + SQR(X + 1) IF X * -1

[ 3 I F X = - 1
IS F(X) CONTINUOUS AT X = -1? (Y/N) |y|

IrigbtI

Press |A|nother or Ic lond i t ions or iQ lu i t

The displays we have chosen to duplicate here do not
show it, but you will notice when you work on your own that
the program will require you to go through the three
conditions of continuity even when your answer to the first
question is correct.

After you have pressed Ig| to graph a function, you may
press |c| to return to the display of continuity conditions.
Try it at some point. After the condition statements return
to the screen you may recall the graph by pressing IgI. It
will appear quickly this time because it does not have to be
redrawn. Thus you may "toggle" back and forth between
conditions and graph to see how they compare.
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1. PURPOSE
This program enables you to study relationships among

the functions
F, F ' , F " , a n d | F ( t ) d tJA

by graphing any two of them simultaneously over an interval
A<X< XMAX of your choice.

2. ON THE SCREEN, JF(t)dt MEANS j F(t)dt

The usual notation for the definite integral of F(t)
from t = A to t = X will not fit on a single screen display
line, and space constraints forced us to omit the limits of
integration on some screens. All integrals in this program
are, nevertheless, definite integrals.

3. STEP BY STEP
It takes about 45 seconds to load DERIVATIVE GRAPHER

from the main disk menu. After reading the greeting
message, press IrkiujcNI to display the function menu shown
in Screen 1. This is the menu for choosing functions to
study. You may enter a function of your own (select option
#12), or use one of the given functions.
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Select F(X) = X*SIN(PI*X) from the function menu by
pressing 111 III I RETURN |. The function will be graphed in
the window 0 <. X <. 5, -5 < Y < 6, as shown in Screen 2.

The graphics display in this program is always divided
into two parts. Each part can contain a graph of F(X),
F'(X), F"(X), or JF(X)dx so that you can see the graphs of
any two of these functions simultaneously in either order.
A function selected from the function menu will be graphed
in the top part, leaving the bottom part blank for you to
fill in (more about this in a moment).

After examining the graph of F(X) = X*SIN(PI*X), press
IRETURNI to display the main options menu (Screen 3).

KFDNCTIONS AVAILABLE) I

1 X*X
2 X*X-1
3 X*X-4
4 -X*(X-4)
5 X*3
6 X*(X- l ) * (X-3)
7 X*X*(X+l)*(X-2)
8 ABS(X)+1
9 SIN(X)
10 SIN(X)+1
11 X*SIN(PI*X)
12

Type a

DEFINE YOUR OWN
number then press 1RETURN 1.

Screen 1. The function menu.
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Y = 6
F < X > = X * S I N < P I * X >

GRAPH OF
-* Y = F< X>

r=-5

:blank>

P r e s s I r l ^ M E l fl S f t o s e e o p t i o n s

Screen 2. The graph of F(X) = X * SIN(PI*X),

KCURRENT DISPLAY) 1

F(X)
TOP
BOTTC

X I

= X*SIN(PI*X)
Y = F(X)

IM <BLANK>
iROM 0 TO 5

|<OPTIONS>|
1
2
3
4
5
6

RETURN TO DISPLAY
CHANGE TOP DISPLAY
CHANGE BOTTOM DISPLAY
CHANGE FUNCTION
CHANGE GRAPHING SCALES
QUIT

Pressi the number of your choice.

Screen 3. The main options menu.
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To proceed from the main options menu, press

111 to recall the most recent graphics display
|2| for a menu for changing the top display
|3j for a menu for changing the bottom display
Ul to return to the function menu
III to rescale the graphs of F, F', F", or JF(t)dt
|6| to quit the program.

For example, to graph F'(X) at the bottom of the
graphics display, press 111 on the main options menu, and
then |2| when the secondary options menu (Screen 4) appears.
The graphics display will now show the graph of F' below the
graph of F, as in Screen 5.

I<CURRENT DISPLAY)I

F(X) = X*SIN(PI*X)
TOP Y = F(X)
BOTTOM <BLANK>

X FROM 0 TO 5
REPLACE BOTTOM DISPLAY WITH

1 GRAPH OF Y = F(X)
2 GRAPH OF Y =F'(X)
3 GRAPH OF Y = F"(X)
4 GRAPH OF Y = jF(t)dt
5 <BLANE>
6 KEEP CURRENT DISPLAY

Press the number of your choice.

Screen 4. The secondary options menu for the
bottom display.
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Y = 6 F < X > = X * S I N < P I * X >

\ G R A P H O F
* • * Y = F < X >

Y = -16

GRAPH OF
Y= F'< X >

P r e s s t o s e e o p t i o n s

Screen 5. The result of pressing |2| in Screen 4.

o f
To replace the bottom display in Screen 5 by the graph

J0F ( t ) d t ,

press IRhtukNI (for the main options menu), |3j (to change
the bottom display), and |4| (to graph JF(t)dt). The
graph of the integral of F from 0 to X will appear on the
bottom half of the screen as the region between the graph of
F and the X-axis on the top half of the screen fills with
color. Screen 6 on the next page shows the completed
d isp lay.

A. GRAPHING SCALES
The functions F, F', F", and Jp(t)dt in any example

are always graphed over a common interval XMIN <. X <_ XMAX.
This interval is set in advance for functions 1-11 on the
function menu, but it may be changed by pressing 13_| on
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F < X > = X * S I N < P I * X )
Y = 6

G R A P H O F

h « « " « " * . , , , , ^ Y = F < X >

Y = 4

G R A P H O F

Y=J F< t >dt-
0

Screen 6. The graph of F is "filled" as its
integral is graphed.

F(X) = X*SIN(PI*X)

KCURRENT SCALES FOR

1 A L L X = 0
2 F ( X ) Y = - 5
3 F ' ( X ) Y = - 1 6
4 F " ( X ) Y = - 5 0
5 JF(t)dt Y = -2

. GRAPHS)1

TO 5
TO 6
TO 16
TO 50
TO 4

these values or
changed. _

Press IRETURNI to keen
press the number to be

Screen 7. The change scale menu, showing the
program's default values for F(X) = X*SIN(PI*X).
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the main options menu and entering new endpoint values when
the graphing scale menu appears. For F(X) = X*SIN(PI*X),
the menu looks like the one in Screen 7.

The change scale menu enables you to use different
vertical scales for the graphs of F, F', F", and JF(t)dt.

The menu also enables you to change the horizontal
scale by pressing 111 and entering new values for XMIN and
XMAX followed by IrETURNIs. Whenever you do this, F(X) will
automatically be regraphed in the top display and the bottom
display will once again be blank.

When you define your own function F(X) by pressing 111
|2| on the function menu and entering a formula for F(X)
followed by a IkkiukNI , you are immediately given an
opportunity to enter values for XMIN, XMAX, YMIN, and YMAX
for the graph of F(X). The values you enter for YMIN and
YMAX will define the vertical scales for the graphs of Ff,
F", and JF(t)dt as well, unless you choose to alter these
values with the change scale option.

PROBLEMS
The following problem sections involve a "guided

discovery" of some of the relations among F, F', F" and
JF(t)dt. You wi l l be asked to fil l in tables with
information about particular graphs. You will then be asked
to draw tentative conclusions from this information and to
check these conclusions against other graphs.

Part A: F and F'

For each function in Problems 1-3, use DERIVATIVE
GRAPHER to display F and F' together, then complete the
table. It is difficult to read the values of F(X) and F'(X)
from the graphs precisely, but in most cases all you need to
record is whether the value is positive (+), negative (-),
or zero (0).
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1. F(X) = X*X - 4 (menu function #3). Copy and complete
the table. At what value of X is F(X) a maximum? Add
this X value to your table.

F ( X ) F ' ( X )X F i n c r e a s i n g 1
decreasing

-2
-1 D
1 I
3

Copy and complete the table for2 .

F(X) = X*(X - 1)*(X - 3)
(menu function #6). Also add to the table the X values
at which relative maxima and minima of F occur.

X F i n c r e a s i n g F ( X ) F ' ( X )
decreasing

0 1 0 +
1
2
3
4
1.5

3. Copy and complete the table for F(X) = SIN(X)
(menu function #9).

X F i n c r e a s i n g F ( X ) F ' ( X )
decreasing

1
1.6
3.1
4
6.3
7.9

Use the tables completed in Problems 1-3 to help answer the
questions in Problems 4-13.

4 . I f F (X) i s i nc reas ing a t X then F ' (X ) i s . (+ , - , 0 )
5 . I f F (X) is decreas ing a t X then F ' (X) i s . (+ , - , 0 )
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6. If F'(X) is positive at X, then, near X, F is .
^-. (a) increasing, (b) decreasing, (c) could be either.

7. If F(X) has a maximum at X then F'(X) is . (+, -, 0)
8. If F(X) has a minimum at X then F'(X) is . (+, -, 0)

r—» 9. I f Ff(X) = 0 at X, F
(a) must have a maximum value, (b) must have a minimum
value, (c) must have either a maximum or a minimum
value, (d) may still fail to have either a maximum or a
minimum value.

r—. 10. If F(X) > 0, then F'(X) . (a) must be +, (b) must
be -, (c) must be 0, or (d) could be any number

11. If F(X) < 0 then F' (X) . (a) must be +, (b) must
^^ be -, (c) must be 0, or (d) could be any number

12. If F(X) = 0 then Ff(X) . (a) must be +, (b) must
be -, (c) must be 0, or (d) could be any number^m 13. If F'(X) > 0 then F(X) . (a) must be +, (b) must
be -, (c) must be 0, or (d) could be any number

^^ 14. Make similar tables for F(X) = X*X*X and
F(X) = -X * (X - 4) to see if they support your answers
to the previous questions.

Part B: F*(X)
To each of the tables in Part A, add a column labeled

F"(X). Fill in this column with +, -, or 0. Then use this
— information to help answer the questions in Problems 15-20.

15. If F(X) > 0, can F"(X) be
rmm (a) posi t ive? (b) negat ive? (c) zero?

16. If F(X) < 0, can F"(X) be
(a) positive? (b) negative? (c) zero?

p—< 17. If F'(X) > 0, can F"(X) be
(a) positive? (b) negative? (c) zero?

18. If F'(X) < 0, can F"(X) be
f^^ (a ) pos i t i ve? (b ) nega t i ve? (c ) ze ro?

19. If F has a relative maximum at X, can F"(X) be
P^. , (a) posi t ive? (b) negat ive? (c) zero?

20. If F has a relative minimum at X, can F"(X) be
(a) positive? (b) negative? (c) zero?
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Part C: JF(t)dt
21. If a function F is continuous on an interval [A,B], and
X is a point in [A,B], then the integral

I(X) = J F(t)dt
JA

is a different iable function of X throughout [A,B]. We
therefore know that F and its integral I(X) are related in
the following ways:

i) If I has a relative maximum or minimum value at a point
X = C between A and B, then F(C) =0.

ii) I is an increasing function of X on any interval on
which F is positive,

iii) I is a decreasing function of X on any interval on
which F is negative.

a) Look at Screen 5 to see these three relationships in
the graphs there.

b) Look for these relationships in the graphs of the other
functions on the function menu.



r*

H. Function Evaluator/Comparer

1. PURPOSE
This program computes the values of one or two functions

at single points or at a preselected number of points (1 to
500) in an interval. This facil itates graphing, enables you
to make informed guesses about the locations of zeros and
extrema of functions, and indicates when two functions may be
identical or differ by a constant. If you are using two
functions, the program also computes the maximum and minimum
values of the difference of the functions at the selected
input points.

2. DESCRIPTION
Once the program is loaded and you have cleared the

greeting message from the screen, you may choose to work with
one function, F(X), or two, F(X) and G(X). The default
functions are F(X) = SIN(X) and G(X) = COS(X). You can keep
them both by pressing |2| and two 1RkiukN|s, or you can press
\l\ or |2| and type in your own function or functions, with
each entry followed by a |RkiukN| . You will then be asked if
you want to compute the values of the functions at individual

79
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X-values, which you will supply (press |P| for "point mode"),
or at equally spaced X-values on some interval (press III for
" interval mode") .

If you select the point mode, the screen will be cleared
and labeled with F(X) and G(X), and you will be asked to
enter values for X one at a time, followed by IRklukNIs. The
program will display the values of X, F(X), and G(X). In
point mode, the program evaluates your functions only at the
X-values you specify. To stop, press |g| iRttUJKNL The
program will then print the maximum and minimum values
computed for F(X), G(X), and F(X) - G(X).

If you select the interval mode, you will be asked to
enter the endpoints of the interval and to specify the number
of equally spaced points in the interval. The program will
then display the values X, F(X), and G(X) as X steps through
the in terva l .

You can halt the computations by pressing the space bar
and then resume them by pressing the space bar again. You
can stop the computations completely by pressing I ESC I •

When F(X) and G(X) have been shown for all X values,
press any key to display the maximum and minimum values
computed for F(X), G(X), and F(X) - G(X).

Finally, you have a choice of repeating the calculations
(press |R|), keeping the same functions but with a different
mode or interval (press |k|), rerunning the program from the
beginning (press |b|), or leaving the program (press Ifil).

3. STEP BY STEP
Load the program from the main disk menu, read the

greeting message, and press IRkiukNI to display the prompt

NUMBER OF FUNCTIONS? (1 OR 2) - |~|
Press |2|, and accept the default functions F(X) = SIN(X)
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and G(X) = COS(X) by pressing |RETURN|s. A list of
computing options will then appear, and the completed
display will look like the one in Screen 1.

I <EVALUATOR/COMPARER) I
NUMBER OF FUNCTIONS? (1 OR 2) = 2

F(X) - SIN(X)
G(X) = COS(X)

l<OPTI0NS>|
COMPUTE F(X) AND G(X) :

P AT SINGLE POINTS
I ON AN INTERVAL
C CHANGE FUNCTTON(S)
Q QUIT
PRESS P OR I OR C OR Q

Screen 1. The function display and option menu.

Press III for interval mode, and accept the default
values

XMIN = 0
XMAX = 6.28318531

by pressing |RETURN|s. Then press |4| III I RETURN I to enter
43 for the number of steps. This will sample the functions
at 44 equally spaced points, starting at the left-hand
endpoint, X = 0. Pressing this last I RETURN I also begins
the production of a table of values that scrolls up the
screen and comes to rest displaying the last eight lines.
When the computations stop, the display will look like the
one in Screen 2.
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X = 0 to 2*PI
F(X) - SIN(X) IN 43 STEPS

G(X) = COS(X)

5.26034119 -.85359309 .52094034
5.40646178 -.76864714 .63967302
5.55258237 -.66731881 .74477218
5.69870295 -.55176774 .83399782
5.84482354 -.4244567 .90544824
5.99094413 -.2880991 .9576006
6.13706472 -.14560116 .98934336
6.28318531 0 .99999999

PRESS ANY KEY FOR
MINIMA AND MAXIMA.

Screen 2. The last eight lines of the interval-
mode table generated for SIN(X) and COS(X).

To continue the demonstration, press any standard key
to display the maximum and minimum values computed in this
table for the functions SIN(X), COS(X),and SIN(X) - C0S(X).
The display will then change to the one shown in Screen 3.

Warning: Do not confuse the computed maxima and
minima with the maximum and minimum values assumed by the
functions on the interval 0 < X <. 2*PI. They are different
in this example (the true values are 1 and -1), as is often
the case. They are the maximum and minimum of the values
computed at the sampled points. The sampled values of X and
the subsequent computations are vulnerable to truncation and
round-off errors as well.
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X = 0 to 2*PI
F ( X ) = S I N ( X ) I N 4 3 S T E P S
G(X) - COS(X)
COMPUTED MINIMA:

F(X)= -.999332848 AT X=4.67585
G(X)= -.997332284 AT X=3.06853
F(X)-G(X)= -1.41209099 AT X=5.55258

COMPUTED MAXIMA:
F(X)= .999332848 AT X=l .60732
G ( X ) = 1 A T X = < )
F(X)-G(X)= -1.41397767 AT X=2.33792

l||EDO COMPUTATIONS
|||EEP F (AND G), NEW POINTS/INTERVAL
|||EGTN PROGRAM AGAIN
IIIUTr, LEAVE PROGRAM

Screen 3. The maximum and minimum values computed
for F, G, and F - G on the interval 0 1 X 1 2*PI.

Press |b| to begin the program again, then press \l\
and enter the single function

F(X) = (1 - COS(X))/X
Press |p| for point mode and enter the X values shown in
Screen 4 one at a time to complete the display.

When you have entered the values of X shown in Screen 4
and noted the resulting values of F, press loj I RETURN | to
request the maximum and minimum values from the computation.
The display will change to the one in Screen 5.
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POINT MODE
F(X) = (l-COS(X))/X

X F(X)
5 .14326756
1 .45969769
.2 .09966711
.04 .01999733
7E-04 3.5023E-O4
0 UNDEFINED
-3 -.66333084
-.20000001 -.09966712
-5.0001E-04 -2.5028E-04

X «
TYPE A NUMBER AND PRESS RETURN.

TO STOP, TYPE Q AND PRESS RETURN

Screen 4. Point mode. Note "UNDEFINED1' at X = 0.

POINT MODE
F(X) = (1-C0S(X))/X

COMPUTED MINIMUM:
F(X) - -.663330832 AT X=-3

COMPUTED maximum:
F(X) = .459697694 AT X=l

IflEDO COMPUTATIONS
l||EEP F (AND G), NEW POINTS/INTERVAL
|||EGIN PROGRAM AGAIN
loJUTT, LEAVE PROGRAM

Screen 5. The maximum and minimum values from the
list in Screen 4.
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4. USES OF FUNCTION EVALUATOR
4.1 Creating a table for analysis and graphing

FUNCTION EVALUATOR enables you to examine the numerical
behavior of a function easily and quickly. If the points
are irregularly spaced, use the point mode. If the points
are regularly spaced or if you need a table of function
values, use the interval mode.

4 .2 Es t imat ing l im i ts
FUNCTION EVALUATOR can sometimes help you to estimate

or discover limiting values of functions. If you want to
investigate the possibility that a function F(X) has a limit
as X approaches C, enter F(X), select the point mode, and
type in values of X that are close to C. The resulting
table may give valuable information about the limiting
behavior of the function.

4.3 Estimating maxima and minima
FUNCTION EVALUATOR lets you search for extrema in a

crude but often effective way—by examining the values of
the function at a large number of points. The program keeps
track of the maximum and minimum values it has computed and
the i r loca t ions .

TWO WARNINGS: (i) There is no guarantee that an
extremum will occur at any of the points at which F(X) was
calculated, ( i i ) The program prints only the first
(leftmost) occurrence of an extremum and there may be
others.

4.4 Does F(X) = G(X) for all X?
What do you do when your solution to a textbook

calculus problem is a function given by a formula that does
not resemble the one given in the answer section? Sometimes
it is clear how to change one of the formulas into the other
with algebra or trigonometry, but not always. Even when
your answer is correct, the formulas may not appear to
represent the same function. For example, the formulas
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f (x) = sec x + tanx and g(x) = tan(j + ~z)

represent the same function of x, but would you be willing
to put effort into showing this (or even believe it) without
some kind of preliminary evidence?

FUNCTION EVALUATOR provides two ways to compare two
functions F(X) and G(X) at a large number of points.

If the formulas for F and G are relatively short, type
in F(X) - G(X) as a single function. Choose an appropriate
interval, select a hundred or more comparison points, and
scroll through the values of F(X) - G(X). If the values are
all zero or close to it (some might be 1E-08, for example),
then F(X) may actually be equal to G(X) for all X in the
interval and a more thorough investigation of the
possibi l i ty of equal i ty is warranted.

If the formulas for F and G are too long to allow
entering F(X) - G(X), you may enter F and G separately,
scroll through their values, pausing whenever you want, and
then check the max-min screen for the largest and smallest
values computed for F(X) - G(X). These data together should
indicate whether the question of function equality is worth
explor ing fur ther.

If you compare the values of F(X) = 2*SIN(X)*C0S(X) and
G(X) = SIN(2*X) in 100 steps through the interval
0 <X< 2*PI by entering F(X) - G(X) as a single function,
the function values will all be 0 or -1E-08. The
possibility that F(X) = G(X) for all X is definitely worth
explor ing.

If you enter these functions separately and sample over
the same interval at the same points, the table will show
identical values for F and G and the max-min screen will
show the minimum and maximum values of F(X) - G(X) to be

-2.96859071E-09 at X « 4.58672
and

9.31322575E-10 at X - 2.13628

Again, it seems likely that F = G.
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If you find a particular F(X) and G(X) to be equal for
one subdivision of an interval, try other subdivisions as^ we l l . The func t i ons F (X) = S IN(20*X) and G(X) - S IN(40*X)

will produce equal values if you sample the interval
r--* 0 < X < 2*PI in 20 steps, but not i f you sample at a larger

number, or at a smaller number such as 3.

- 4 . 5 D o e s F ( X ) = O ( X ) + C f o r a l l X ?

When you are evaluating indefinite integrals, it is
useful to know when two functions F(X) and G(X) differ by a
constant •

Compute F(X) - G(X) for a large number of X values in
— an i n te rva l . I f t he compu ted va lues o f F (X ) - G(X) a re

approximately constant, then it may be worth investigating
to see whether F(X) « G(X) + C for all X in the interval.

PROBLEMS
" ^ E s t i m a t e t h e l i m i t s i n P r o b l e m s 1 - 5 .

1. 1 im x_>0 2*X/ (X + 7*SQR(X))
^ 2 . l i * X - > 0 ( 1 " 0 0 S ( X ) ) / ( X » X )

3. limX->0 (SIN(X)/(EXP(X) - 1)
4. limX->«>(X " SQROWX + X))^ 5 . l i m x _ > ( H . X * L 0 G ( X )

6. Estimate the minimum value of F(X) =
^ ( 2 * X ^ 3 ) / ( 2 * X - 8 . 5 ) , 4 . 2 5 < X < 8 . 5

7. Is the function 3 + 4*00S(X) + C0S(2*X) ever negative?
8. The equation SQR(X) + SQR(X + 1) = 4 is known to have a

solut ion in the in terva l [3 ,4] . Est imate i t .
9. Estimate the largest absolute error in each of the

: . — 1 f o l l o w i n g a p p r o x i m a t i o n s o n t h e i n t e r v a l - . 1 < . X < . . 1 .
a) 1/(1 - X) * 1 + X
b) 1/(1 + X) * 1 + X + X*X

- ^ c ) S Q R ( 1 + X ) * 1 + ( X / 2 )
d) SQRU + X) * 1 + (X/2) - (X*X/8)
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Test the functions in Problems 10-17 to indicate whether
they differ by a constant on some domain of X~values. If
you think they do, find the constant, and verify the result
with algebra. What is the largest possible domain in each
case?

i i * 2 + 3 a °1 1 . — a n d10. x A - 1——r and ——rx + 1 x + 1

12. ln2x and ln3x

14. sinx and vsin2x

16. 2 2sin x and cos x

x2 + 1 X2 + 1

13 • tan x sin 2x and -2 cos2x

2 7 .15. sin x and -cos*x

17. s in2x and -^cos2x

18. Compare the values of
f(x) = sec x + tanx and g(x) = tan(j + ^)
at a large number of points.



I. Parametric Equations

1. DESCRIPTION
This program graphs parametric equations of the form

X = X(T), Y = Y(T)
by showing three graphs on the screen:

X vs. T, Y vs. T, and Y vs. X.
-a-. You enter X(T) and Y(T) and an interval for T, and the

computer does the rest. The three graphs are traced
simultaneously by moving particles as T runs through ther^mm parameter interval from TMN to TMAX. Thus, you can see
motion in the XY-plane resolved into components in the XT- and
YT-planes. You may stop and restart the motion at any time.

The program also offers the option of viewing full-screen
graphs of X(T), Y(T), and Y vs. X separately. To graph Y vs.

—i X, the computer plots the point pairs (X(T),Y(T)).

~ 2. STEP BY STEP
After loading the program, read the greeting messages

and go on to the opening menu shown in Screen 1.

89



9 0 I . P A R A M E T R I C E Q U A T I O N S

COORDINATE FUNCTIONS
X(T) = COS(T)
Y(T) = SIN(T)

T-DOMAIN
TMTN - 0
TMAX = 6.28318531

IcIhange entry IgIo on IqJutt l_l

Screen 1. The opening menu is the function menu.

Next, press |g| to go on to the graph menu:

111 X(T) (to view X(T) in the XT-plane)
|2| Y(T) (to view Y(T) in the YT-plane)
|3| Y vs X (to view Y vs. X in the XY-plane)
111 ALL (to see all three of the above

in motion together.)
III CHANCE FUNCTION (to return to the function menu)
|61 RESCALE T (to change the T-interval)

Ulurr (to leave the program)

Screen 2. The graph menu looks like this (except
for the parenthetical explanations).

Press |4| to see the trajectories of X(T), Y(T), and Y
vs. X develop as T runs from 0 to 2*PI. If you pause (press
any standard key) when T is a little past PI, the display
will look something like the one shown in Screen 3.
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T

i
V"■-.

-
»i1 i-

Screen 3. The circular motion halted at about
T = 1.25 * PI.

Press any key to complete the graphs, and press any key again
to return to the graph menu.

You may obtain the graph of X(T) by pressing |lj. Also
try the graphs of Y(T) and Y vs. X.

The rescale option #6 on the graph menu lets you enter
new values for TMIN and TMAX for the current functions. Use
relatively short intervals whenever you can, so that
consecutive sample points will lie reasonably close together
on the screen.

(For an example of what not to do, try the current
functions on the ALL Screen with TMIN = 0 and TMAX = 100.)

3. A LOVELY GRAPH
Now return to the function menu and enter

X = 4*C0S(T) + C0S(4*T) TMIN = 0
Y = 4*SIN(T) - SIN(4*T) TMAX « 2*PI

Then press |G| to go on, and then press HI • The resulting
graph should look like this:
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Screen 4. X - 4*COS(T) + C0S(4«T),
Y - 4*SIN(T) - SIN(4*T), 0<T< 2*PI.

A. PROJECTILE MOTION
The vector equation for ideal projectile motion near

the surface of the earth is

R = i(vQcosa)t + j(-^gt2 + (vQsina)t).

We can graph this motion by setting
X(T) = (v0 cos a)*T

Y(T) = (- Jg)«T«T + (v0sina)«T.
In these equations, Vq is the project i le 's ini t ial veloci ty,
a is the angle of elevation measured from the horizontal, g
is the gravitational constant in appropriate units, and T is
elapsed time measured from firing at T = 0.

The projectile reaches its maximum height above
horizontal ground at

VQsin aX = s e c o n d sm g
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and strikes down range at

TMAX = 21^ seconds.
If we take a = n/4 for maximum range, g = 32 ft/s , and
Vq = 32 /2 ft/s, then

VqCos a = vQsina = (32 /2)(1/ 12) = 32
TMAX = 2(32/32) = 2.

Enter ing

X ( T ) = 3 2 « T Y ( T ) = - 1 6 < T » T + 3 2 * T

T M N = 0 T M A X - 2

generates the following display on the ALL screen:

Screen 5. The projectile motion Y vs. X, resolved
into its X (lower right) and Y (upper left)
components.

For a larger picture of Y vs. X, press 13.1 on the graph
menu. Since T is time in this mathematical model, you will
see the pro ject i le r ise rap id ly a t firs t , ha l t i ts ver t ica l
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motion at maximum height, and fall with increasing velocity
back to earth.

PROBLEMS
In Problems 1-10, graph the equations over the given t-
intervals, first on the X vs. Y screen, and then on the ALL
screen. Enter 4 cos t as 4*C0S(T), 2n as 2*PI, and so on.
1. Ellipse: x = 4 cos t, y = 2 sin t, over

( a ) 0 < t < 2 n , ( b ) 0 < t ( n , ( c ) - n / 2 < t < n / 2
2. Hyperbola: x = sec t (= 1/cos t),

y = tant (= sint /cost) , over the intervals
a ) - 1 . 5 i t i 1 . 5 b ) - 1 . 4 < t < 1 . 4
c ) - 1 < t < 1 d ) - . 5 < t < . 5
e) -.1 < t < .1

3. Parabola: x = 2t + 3, y = t2 - 1, -2 £ t <. 2
4. Cycloid: x = t - sint, y = 1 - cos t, over

(a) 0 < t < 2n, (b) 0<t< 4n, (c) n < t < 3n
5. Trochoid: x = 2t - sint, y = 2 - cos t over

(a) 0 i t < 2n, (b)n<t< 3n, (c) 0 < t <. 8n
6. Hypocvcloid: x = cos3t, y = sin3t over

(a) 0 < t < 2n, (b) -n/2 i t < n/2
7. x = cos 2t, y = sin3t, 0 <. t <. 4n
8. x = cos 3t, y = sin4t, over intervals of your choice
9 . A n ice cu rve :

x = 2 cos t + cos 2t, y = 2 sin t - sin 2t, 0 <. t <. 2n.
What happens when 2 is replaced by -2 in the equations
for x and y? Graph the new equations to find out.

10. An even nicer curve:
x = 3 cos t + cos 3t, y = 3 sin t - sin 3t, 0 < t < 2n.
What happens when 3 is replaced by -3 in the equations
for x and y? Graph the new equations to find out.

11. Project i le mot ion: Graph
x = (64 cos a)t, y = -16t + (64 sin a)t, 0 <. t < 4 sin a,
for the following angles of elevation:
a) a =* n/4 b) a = n/6 c) a = n/3
d) a = 0 e) a = n/2 (watch out, here it comes!)



J. Root Finder

1. PURPOSE
This program approximates the roots (zeros) of a

continuous function F(X) by the bisection method, the secant
method, a modified regula falsi, and a quasi Newton's method.

2. THE METHODS
Each method calculates an initial segment Xq, X^, ... ,

I of a sequence of real numbers that under favorable
circumstances converges to a root of the equation Y = F(X).
The convergence depends on the function and method as well as
the choice of Xq or Xq and X^. A discussion of convergence
may be found in most texts on numerical methods. The
algorithms used in ROOT FINDER are the ones described in
Werner C. Rheinboldt's article, "Algorithms for Finding Zeros
of Functions, * The UMAP Journal. Spring 1981, Vol. 2, No. 1,
pp. 43-72. You may also enjoy G. H. Gonnet's "On the
Structure of Zero Finders, • BIT, 1977, No. 17, 170-183.

3. THE EXISTENCE OP ROOTS
To guarantee the existence of a root, we can often

apply a corollary of the intermediate value theorem for
continuous functions. This corollary says that if a
function F(X) is continuous throughout a closed interval

95
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[A,B], and if F(A) and F(B) differ in sign, then the
equation F(X) = 0 has at least one solution in the open
interval (A,B). Thus the calculat ion F(- l ) =-3 (negat ive)
and F(l) = 3 (positive) reveals that the function
F(X) = 4X^ - X has at least one root between X - -1 and
X = 1. In fact, F has roots at X = 0 and X = +1/2.

4. GRAPH THE FUNCTION FIRST
Once you know that F(X) has a root, your first step

should be to graph F to learn roughly where the graph
intersects the X-axis and how the graph is shaped.

If the graph of F actually crosses the X-axis (Fig. 1),
any of the four root finding methods may be tried. The
graph should enable you to choose a suitable starting
interval [A,B] containing the root and isolating it from
other roots, or, in the case of Newton's method, to
determine a suitable starting value Xq.

Tangent

Root sought

Figure 1. a) With Xq = A and X1 = B, the
bisection method calculates the midpoint C as I^.
The secant method calculates D as Xj. b) With Xq
as the starting value, Newton's method calculates
X^ to be the point where the tangent to the curve
above Xq crosses the X-axis.

*-x
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The secant method approximates a root by finding points
where secants to the graph near the root cross the X-axis.
The modified regula falsi is a variant of the secant method
that usually accelerates convergence (Fig. 2).

▶ x

Root

Figure 2. The point Xg is computed from X^, Fl,
X2, F2 by linear interpolation. Then X^ is
replaced by Xg (as in bisection, since F2, F3 have
opposite sign); but then the value at the fixed
end, F2, is replaced by F2/2, so that X* is found
from X3, F3, X2, F2/2. This modification
accelerates convergence.

If the graph of F does not cross the X-axis but is
instead tangent to it, the program's bisection routine will
not apply because it requires F to be negative on one side
of the root while positive on the other. The modified
regula falsi method will also not apply. The secant method
may be tried with proper choices of Xq and Xj., and in the
case of a curve that is convex upward (as in Fig. 3) the
secant method will converge to the root if none of the
subsequent secant slopes is calculated by the computer to be
zero.



98 J. ROOT FINDER

Y = F(X)

▶X

Figure 3. a) If the graph of F looks like this
near the root sought, start the secant method by
choosing the starting values Xq and X* on the same
side of the root, b) Newton's method may be
started on either side.

When F is different iable and its graph does not cross
the X-axis at the desired root, try Newton's method.
Although the method will fail when a zero derivative is
encountered, when it does work it will usually converge
faster than the secant method. Use the graph of F to choose
a suitable starting value Xq.

Once you have decided which method to try and have
determined the appropriate starting value or values, select
the method from the method menu and proceed as in the
following examples.

5. STEP BY STEP
Load the program, read the greeting messages, and

continue on to the function and domain menu shown in
Screen 1. After reading the menu, press |g| to graph F
(Screen 2).
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CURRENT FUNCTION
F(X) - X - COS(X)

GRAPH REGION
XMIN = -6
XMAX = 6
YMIN - -8
YMAX = 8

IcIhange entry IrIoot finders IgIraph |_l

Screen 1. The function and domain menu.

i i 1 1 I I I !

..•'

-

» » i » 1 1 1 1

-6 «< X < 6
-8 < Y < 8

IcIhange entry IrIoot finders l_|

jjcreen 2. The graph of F(X) = X - COS(X) shows a
root of F between X = 0 and X = 1.

The graph of F(X) = X - COS(X) crosses the X-axis
between X = 0 and X = 1. You may use initial X-^values in
this interval to try all four of the program's root finders.
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The messages at the bottom of Screen 2 offer the choice
of returning to the function and domain menu to change the
function or graphing region (press |c|), or of starting one
of the root finding routines. Since the graph in Screen 2
is adequate for localizing the root, i.e., gives adequate
information about where to start the approximating sequence
Xq, Xj, ... , press |R| to call up the method menu.

F(X) = X - COS(X)
-6 <X < 6

|||ISECTI0N METHOD
IsJecant METHOD
IrJegula falsi method
InJEWTON'S METHOD
icjhange function or graph region
IqIutt

PRESS LETTER OF YOUR CHOICE |~|

Screen 3. The method menu.

BISECTION METHOD
F(X) = X - COS(X)
-6 <X < 6
FIRST GUESSES
X O - O X I =
MAXIMUM NUMBER OF ITERATIONS
XMAX = 15
ERROR TOLERANCE
TOL = 1E-03

IreturnI accept entry IescI abort entry
ENTRY LIMIT: 15 CHARACTERS

Screen 4. Starting the bisection method.
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Now press IbI for the bisection method. The display
will immediately change to the one shown in Screen 4.

Press four |RETURN|s, pausing between them to watch the
screen. The first two will enter the default values Xq = 0
and X* = 1; the next two will accept the display default
values KMAX = 15 and TOL = 1E-03. After the fourth return
the message at the bottom of the screen will change to

IcIhange values IsItart sequence CI
Press |SI to start the sequence of compilations. The

computer will now begin calculating and will display the
endpoints of the bisection intervals as it works along.
Since KMAX = 15 and TOL = 1E-03, the calculations will halt
with Xj^ or when the difference of two consecutive values is
less than 1E-03, whichever occurs first. In the present
example, the tolerance is reached at step 10, with the
results shown in Screen 5.

X A B B I S E C T I O N

0 0 1
1 .5 1
2 .5 .75
3 .625 .75
4 .6875 .75
5 .71875 .75
6 .734375 .75
7 .734375 .7421875
8 .73828125 .7421875
9 .73828125 .740234375
10 .73828125 .739257813
F(A) = -1.34514983E-03
IcIhange entry IrIoot FINDERS |~|
A AND B LESS THAN 1E-03 APART

Screen 5. The result of applying the bisection
method to F(X) = X - COS(X) after specifying
Xq = 0, Xx = 1, KMAX - 15, TOL = 1E-03.
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The screen display shows that you used the bisection
method and that the computation reached the desired
tolerance at the tenth iteration. It also shows that the
desired root X lies between

A « .73828125 and B = .739257813,

the left and right endpoint values of the tenth bisection
interval. Rounded to two decimal places, therefore,
X* = .74.

As you can see, having achieved a tolerance of 10
does not mean that you have found the root X to three
decimal places.

Now press |C| I RETURN I 151 151 |^>| |6| I RETURN I |g|
to repeat the computation with the closer tolerance 10 .
The display in Screen 5 will continue from the point it
stopped, terminating with

1 5 . 7 3 9 0 7 4 7 0 7 . 7 3 9 1 0 5 2 2 5
F(A) - -1.7449096E-05
IcIhange miry IrIoot finders |~|
maximum number of iterations reached

This time, the maximum number of iterations is reached
before the tolerance is achieved, and the computer tells you
so. The display shows the value of F at the last computed
left endpoint, and what the left and right endpoints are.
The root X lies in the interval

.739074707 < X* < .739105225.

Rounded to four decimal places, X = .7391.
To find the value of X more accurately, you can

increase the number of iterations. Press |c| to change
values. Then press III |?l I RETURN I to enter KMAX - 25,
press IkkiukNI again to accept TOL = 1E-06, and press |G| to
continue the computation. The error tolerance is reached at
K = 20, with
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.739084244 i X < .739085197.

In the first five decimal places, X = .73908.
How well does the secant method do with the current

parameters? Find out by pressing |R| |s| and |S| again to
start the secant computation with Xq = 0, X^ = 1, KMAX = 25,
and TOL = 1E-06. The display will show

F(.739085112) = -3.59414116E-08

after only four iterations. Thus, X* ^ .739085112.
Unlike the successive approximations of the bisection
method, however, the successive approximations of the secant
method need not bracket X and we have no way to tell
directly how accurately X has been calculated here.

Now try Newton's method. Press |r| and |N|, and then
IkkiukNI three times to enter Xq = 0 and accept the current
values KMAX = 25, TOL = UB-06. Then press |s| to start the
computation. The resulting display, shown here in Screen 6,

X A F ( A ) N E W T O N

0 0 -1
1 . 9 9 9 9 9 9 9 5 4 .45969761
2 . 7 5 0 3 6 3 8 7 .0189230782
3 . 7 3 9 1 1 2 8 9 1 4.64561126E-05
4 . 7 3 9 0 8 5 1 3 3 4.96584107E-10
F(A) WITHIN 1E-06 OF ZERO.

IcIhange entry IrIoot finders LI

Screen 6. Newton's method finds X to nine places
in four steps, but, like the secant method, does
not give a way to be sure of the result.



1 0 4 J . R O O T F I N D E R

indicates that the value of F at X4 = .739085133 is

F(X4) = 4.96584107E-10, a number very close to zero. This
suggests that X. is very close to X , but like the secant
display the Newton display gives no interval about X from
which to tell how close the approximation is.

Return to the bisection method and request Xq = 0,
X1 = 1, KMAX = 30, TOL = 1E-08. Tolerance will be reached
in twenty-seven steps, the relevant information from the
display being

2 7 . 7 3 9 0 8 5 1 3 . 7 3 9 0 8 5 1 3 8
F(A) - -4.50017979E-09
F(B) = 7.85439625E-09
A AND B LESS THAN 1E-08 APART

Thus, after rounding,
X* = .7390851,

to seven places, as the Newton calculation in Screen 6
suggested.

6. PITFALLS OF COMPUTATION
This section gives examples of some of the hazards of

numerical root finding.

Example 1. Leaving the domain of the function or its
der i va t i ve .

Newton's method will not find the root X* = 1 of the
function F(X) = >/X - 1 if the first guess is 4 or greater.
With Xq = 4, the method calculates X^ = 0, where F' is not
defined (Fig. 4), and the computation stops. With Xq > 4,
the method finds X^ < 0, which is not in F's domain. Again,
the computation stops.

The secant method encounters a similar problem if
4 < Xq < Xr
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- l

i

1

i

Tangent to
curve at X = 4 ( 4 , l ) ^ ^ ^ ^ 5 5 ^

^ ^ Y = V X - 1
■ i l l

V H 4

Figure 4. The tangents to the right of X = 4
cross the X-axis at negative X-values.

Example 2. Finding a root different from the one sought.
Figure 4 shows the graph of

F(X) = X4 - X2 « X*X*(X + 1)*(X - 1).

Y
i 1Y = X4 - X2 /

\ \ _v/?/2 V^ /2^ -J
- l \ " ^ n . ^ ^ h

\ \ ( - \ /2 /2 , -1 /4 ) / - 1

- 2

^V^(n/2/2, -1/4) /

Figure 5. All three roots can be found by
starting Newton's method near -v/2/2.

Newton's method will findjthe root X = -1 if XQ is far
enough to the left of - \/2 /2. With Xq too close to
-yj2/2, however, the computer will encounter a zero slope
or a value of X^ too large to handle. There is a zone just
to the right of - y]2 12 where values of Xq will lead to
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X = 1 instead of X =0.
Likewise, selected values of Xn near \fl 12 will lead♦ * * "to X = 1, X = 0, X = -1, or no root at all.
Similar remarks apply to the secant method.

Example 3. Curves that are almost flat near the root.
Some curves are so nearly flat near a root X that the

secant method encounters a zero slope in the early stages of
computation. Try graphing

F(X) = (x - l)/v40, 0 < X < 2, -1 < Y i 1,

and then solving the equation F(X) = 0 by the secant method
with Xq « -1.5, Xj = 2, KMAX = 5, TOL = 1E-06. The computer
will encounter a zero secant slope almost immediately and
indicate that it cannot go on. Press IRkjlxjkNI to continue,
and then press |c| I ESC I and |G| to graph the function.

Other curves are so flat near a root that tolerance is
reached before the root is approximated with any useful
degree of accuracy. Try the secant method on

F ( X ) - ( X - 1 ) * Z L , 0 < X < 2

with Xq = 1.5, Xj = 2, KMAX = 10, TOL = 1E-06. The computer
will stop at K = 2 with the following information:

K A B S E C A N T

0 1 . 5 2
F(A) = 4.76837158E-07
F(B) = 1
F(A) WITHIN 1E-06 OF ZERO

Thus, even with TOL = 1E-06 the estimate of the root is in
error by fif ty percent.
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7. TWO (usually) AVOIDABLE TROUBLES
Two questions to ask if you encounter trouble at the

beginning of a computation are:
rnm 1. Secant method. Are the function values so nearly equal

at Xq and X* that the computer encounters a zero slope
right away? For example, the method will work on
F(X) = (X - l)/\ 5 with Xq = 0 and X1 = 2, but not on
G(X) = (X - 1)^6.

— 2. Bisection method. Does the function change sign at the
root sought? The algorithm requires it. The method
will work on F(X) = (X - l)/\ 5 with XQ ■ 0 and Xj = 2,

^ b u t n o t o n G ( X ) = ( X - 1 ) ^ 6 .

- S. PAUSE AND ESCAPE

To pause to inspect a particular value during a
« computation display, press IdRLlSl (together). Press

ICIRLlSl or IRETURNI to resume.
To escape from a computation and return to the method

^^ menu, press I ESC I.

r - * P R O B L E M S
In Problems 1-12, estimate the root of F(X) on the given

_ interval with KMAX = 20 and TOL = 1E-6. Compare the results
of all four ROOT FINDER methods, or as many as apply. Nine-
place answers are given with the problems for comparison.

1. F(X) = X2 + X - 1, 0iX<l
X* = .618033989

2. F(X) = X3 + X - 1, 0iX<l
X* = .682327803

3. F(X) = X4 + X - 3, 1 £X < 2
X* = 1.16403514
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4. F(X) = X4 - 2, 1<X<2
X* = 1.18920712

5. F(X) = X3 + 2X - 4, UX<2
X* = 1.17950903

6. F(X) = X4 - X3 - 75, 3 i X < 4
X* ■ 3.22857729

7. F(X) = X3 - 3X - 1, -21X1-1
X * - - 1 . 5 3 2 0 8 8 8 9 • — ' i

8. F(X) = \/X + \/l + X - 4, 01X^4
X* = 3.515625

9 . F (X) = 1 / (1 - X ) + JTTT- 3 .1 , .41X1 .5
X* - .470194274

10. F(X) - y/1 + X + SIN(X) - .5, .51X10
X* - -.326461807

11. F(X) - 2C0S(X) - \/l +X, 0 1X12
X* = .828360808

12. F(X) = XX - 2, 11X12
X* - 1.55961047

13. F(X) = \/2X + 1 - \/X + 4 has a root at X* = 3.
Starting with Xq - 2 and Xj = 4, determine how many
steps each method takes to find X .

14. Find the three zeros of F(X) = 2X - X2.
15. Starting with Xq - .5 and Xj = 2, how close can yon

come to the root X* = 1 of F(X) = (X - l)11 with the
bisection method?

16. Try finding the root X* = 1 of F(X) = (X - l)21 with
the bisection method with Xq = 0, X1 - 1.5, KMAX = 10,
and TOL - 1E-03. Will taking TOL = 1E-08 improve the
resu l t?

17. Find three solutions of the equation X3 = 3X + 1.
18. Find two solutions of the equation

X4 - 2X3 - X2 - 2X + 2 = 0.
19. Find three solutions of the equation 4X5 - 5X4 + X = 0.
20. Find the four solutions of the equation

2X4 - 4X2 + 1 = 0.
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K. Picard's Fixed Point
Method

1. PURPOSE
This program enables you to explore the Picard method

and use it to solve equations of the form

f(x) = x

numerically. You may also use the program to estimate the
zeros of a function h(x) by applying the Picard method to the
equation f (x) = h(x) + x - x.

The method may be applied when f is continuously
differentiable throughout a neighborhood of the fixed point x
and If '(x)| < 1. If If '(x)| > 1, the fixed points of f may be
found by applying the method to g(x) = f (x) instead.

2. DESCRIPTION
A fixed point of a function f is a value x for which

f(x) = x. For example, zero is a fixed point of sinx
because sinO = 0. Geometrically, a fixed point of f is a
point on the x-axis for which the graph of the curve y = f (x)
intersects the line y = x. (See Fig. 1.)

109
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Figure 1. The geometric interpretation of a fixed point.

In this program, fixed points are found by repeated
evaluation of f(x). This method, often called Picard
iteration, begins with the choice of an x-value, say Xq, and
an evaluation of f(x) at this point: yQ = f(xQ). Next let

xl = y0 an^ ***"* ^1 = ^^xl^' an<* t^ien rePeat the cycle with
x2 = ^1# This procedure determines a sequence of values

xl* x2* • •
sat is fy ing the re lat ion

x* = fO^ - i ) , n = 1 , 2 , . . . .
Under favorable conditions, these values will approach a
fixed point of f as n increases.

The Picard procedure may be visualized as a path of
horizontal and vertical line segments, as shown in Figs. 2
through 5. Start from the point (xq,0) and move vertically
to (xQ,yQ>. Then the assignment x^ = yQ corresponds to a
horizontal move to the line y = x, from which the next move
is vert ical , to (x-,y^). The construct ion is then
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repeated: each Picard step after the first is represented
by a horizontal segment leading to the line y = x followed by
a vertical segment leading to the next computed value.

The Picard method works, for instance, when f and its
derivative f are continuous and |f'(x)| < 1 at the fixed
point x. For then If I < 1 throughout an open interval (a,b)
containing x, and any choice of Xq in this interval will lead
to x. (The conditions on f here are sufficient conditions,
but not always necessary. In some instances the method will
find x even if one or more of these conditions fails to hold.
See any introductory text on numerical analysis for more
about the method and its underlying mathematics.)

Roughly speaking, we can say that if the slope of the
curve y = f(x) at the fixed point is strictly between -1 and
1, and if Xq is near the fixed point, then the path leads to
the solution, as in Figs. 2 and 3. If the slope at the fixed
point is greater than 1 in absolute value, the path leads
away from the solution, as in Figs. 4 and 5.

b y

Figure 2. Interpretation of convergence when
0 < f '(x) < 1 at a fixed point xi a) xQ < x,#
b) xn > x.
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a y

y\. * A. **■') *^f\

Figure 3. Interpretation of convergence when
-1 < f'(x) < 0 at a fixed point x:
a) Xq < X; b) Xq > x.

b y

Figure 4. Interpretation of divergence when
f'(x) > 1 at a fixed point x: a) xQ < x,#
b) Xq > x.
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a y
y = x

9 n i ' x

Figure 5. Interpretation of convergence when
f'(x) < -1 at a fixed point x: a) xQ < x;
b) Xq > x.

When f'(x) =1 the procedure may be too slow to be
useful. If f '(x) = -1, successive values of x may straddle
the fixed point rather than converge to it, but its value can
be approximated by (xn + xn-i)/2.

3. WHEN | ff (x) | > 1, USE f""1
When |f'(x)| > 1 at a fixed point x (so the iteration

leads away from x), we can find x by replacing f by its
inverse function f""1 = g.

Since f(x) = x for a fixed point, we have

g(x) = g(f(x)) = rX(f(x)) = x.
That is, g(x) = x, so that the fixed points of f are to be
found among the fixed points of g.

Similarly, i f x is a fixed point of g, the equalit ies
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f(x) = f(g(x)) = {(f^ix)) = x show that x is also a fixed
point of f. Thus, f and its inverse g have identical fixed
po in ts .

F inal ly, s ince g ' ( f (x) ) • f ' (x) - 1 for d i f ferent iab le
inverse functions whose derivatives are different from zero,
the inequality |f '(x)| > 1 at a fixed point x implies that
lg'(x)| < 1. Hence, when |f'(x)| > 1, the Picard procedure
applied to g leads to a fixed point of f•

4. STEP BY STEP
After loading the program, read the greeting messages.

Note that in all computer input and output F(X) denotes the
function f(x), called the base function, and G(X) denotes
f (x). Now continue on to the program menu, shown below,
and press |P| to begin Example 1.

PROGRAM MEND

I l l .. PROBLEM DISPLAY
iFl .. GRAPH F(X)
lG| .. GRAPH G(X)
III .. ITERATE F(X)
111 .. ITERATE G(X)
iQl .. QUIT
PRESS LETTER OF YOUR CHOICE |_l

Screen 1. The program menu.

Example 1. Find the fixed points of the function
f(x) = x2.

Solution. Press |P| on the program menu, if you have not
done so already, to display the problem menu:
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BASE FUNCTION AND ENDPOINTS

F(X) = X * X
A = 0 B - 1 . 1

INVERSE FUNCTION AND ENDPOINTS

G(X) = SQR(X)
C = 0 D = 1 . 2 1

IcIhange entry IgIo on IqIuit

Screen 2. The problem menu.

The base function f(x) is identified in computer notation as

F(X) = X * X
This function was chosen for the first example because it is
familiar and its fixed points are known in advance! the
roots of the equation x2 = x are, of course, 0 and 1.

Note the additional information on the screen. The
interval for graphing F was chosen to run from 0 to 1.1 to
include both fixed points while providing a good screen
display. In addi t ion, the inverse funct ion, g(x) = /x , is
identified on the screen as

G(X) = SQR(X)
and its plotting interval was chosen to coincide with the
range of values taken on by F.

Now press |G| to return to the program menu, then press
|FI. A graph of Y = X * X over the interval from 0 to 1.1
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will appear quickly on the screen along with a graph of the
line Y = X, as shown in Screen 3.

GRAPH OF F(X)

X

B =
H I =

PRESS RETURN TO CONTINUE

1. 1
1 . 2 1

Screen 3. The graph of F(X) = X * X crosses the
line Y = X at (0,0) and (1,1). The points X = 0
and X = 1 are fixed points of F.

The graph in Screen 3 shows the two fixed points and
indicates that the slope of the curve is less than 1 at
x = 0 and greater than 1 at x = 1. Thus, recalling Figs. 2
and 4, we expect a choice of Xq between 0 and 1 to produce a
sequence approaching x = 0. Press |RkiukN| for the menu,
select III, and accept the value .5 for XO by pressing |G|
to go on. The display now shows the geometry of the
convergence as well as the final computed function values.
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GRAPH OF F<X>

5 1 . 5 2 5 8 7 8 ? 1 E - 0 5
6 2 . 3 2 8 3 0 6 4 4 E - 1 0

2 . 3 2 8 3 0 6 4 4 E - 1 0
5 . 4 2 1 0 1 0 8 7 E - 2 0

PRESS RETURN TO CONTINUE

Screen 4. The iteration path from XO = .5 to X = 0.

The action has been slowed substantially with a time delay
routine in the computer program, but it still moves fast.
You can halt the program by pressing IRkiukNL then continue
with another I RETURN L

When the iteration stops, the numbers at the bottom of
the screen show that 6 steps were required to reach the
value 5.42101087 x 10~20, which approximates the fixed point
zero to 19 decimal places. This is better accuracy than is
normally expected, since the program stops calculating as
soon as the difference between two successive values of the

—8function is less than 10 in absolute value.
Press IRkiukNI to see the entire table of values. The

display shows the number of steps, the starting X-value .5,
and the computed values .25, .0625, ....
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Now press IRkiukNI to return to the program menu, then
|P| to review the problem. Note especially the plotting
interval for the inverse function. Below C and D the
display now shows the minimum and maximum values that were
computed for F in plotting Y = F(X):

L O = 0 H I = 1 . 2 1

Although these values are not needed for the present
problem, their automatic appearance will be useful in
problems that require entry of these values for plotting
Y = G(X).

Press |G| to go on, and |g| on the program menu. The
graph of G(X) = SQR(X) for X from 0 to 1.21 appears after
computation of a table of values:

GRAPH OF G<X)

X

D =
H I =

PRESS RETURN TO CONTINUE

1 . 2 1
1. 1

Screen 5. The fixed points of G(X) = SQR(X) are
also X = 0 and X = 1.

Again the fixed points 0 and 1 are apparent, but this
time the slope of the curve at x = 1 lies between 0 and 1.
The iteration can start anywhere in the interval (A,B).
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Press IRkiukNL and then |j| when the program menu
appears. An opportunity to change the value of XO is
presented, but XO = .5 will do, so press |g| to start the
iteration. This time the function values approach 1, as
desired, but the convergence is slow. At step 27 the
stopping cr i ter ion is final ly sat isfied, and the fixed point
1 is approximated by .999999995, which is accurate to 8
decimal places since the error is 5 x 10 •

Now press IRkjlukNI to see the computed values. Since
the screen holds only 24 lines of text, the first few values
have scrolled off the screen. Press I RETURN I. |j|, and |G|
to repeat the full display of values. The action can be
stopped any time with one IRkiukNL then continued with
another. This time you should get a better view of the
values

. 5 , . 7 0 7 1 0 6 7 8 1 , . 8 4 0 8 9 6 4 1 5 , . . . ,

that are calculated as the iteration proceeds.

5. THE F-€ TOGGLE STITCH FEATURE
In connection with Example 1, we point out an

additional feature of the program. From the program menu
press |F| to graph Y = F(X), and then I RETURN I and |G| to
graph Y = G(X) • Keys If| and |G| can now be used as a
toggle switch to alternate between the two graphs without
intermediate returns to the menu. This action provides a
vivid display of the symmetry in the line y = x that
characterizes the geometric relationship between a function
and i ts inverse. Try i t .

6. ANOTHER NICE FEATURE: PRESS |ISC| TO SKIP 6 IN
THE PROBLEM DISPLAY

Example 2. Find the fixed point of the function
f (x) = 1 + x/2

using Picard iteration with Xq = 1.
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Solution. Again, the example is chosen to confirm a
solution we know in advance: the equation 1 + x/2 = x has
one root, x = 2. Also known in advance is that the graph of
f is a straight line with slope 1/2. Since the slope is
less than one in absolute value, the Picard procedure will
succeed with f • The inverse function is not needed.

Press |P| on the program menu, then |c|, and enter

F(X) = X/2 + 1 A = 0 B = 3

When the value of B is entered, the cursor will jump to
the formula for G(x). Since the inverse function is not
needed in this problem, a direct exit from the change mode
can be made by pressing I ESC I. Now press Ig| and |f| to
graph F. Then return to the program menu, press llj, enter
XO = 1, and press |g| to start the iteration. In 27 steps
the procedure terminates with x = 1.99999999, which
approximates the fixed point 2 with an error of 10 . Press
IRETURNI to see steps 6 through 27.

To repeat the display of values from the beginning,
press IReiukNL then III, then |G|, stopping and continuing
as desired by pressing IRETURNI •

To experiment, try other values of XO, say -10, -20,
and 50. If you wish to see the action graphically, you will
need to construct the graph of F each time before starting
the i te ra t ion .

It is also instructive to enter the inverse,

G(X) « 2 * (X - 1)
Take C = 1, D = 2.5, and compare the graphs of F and G.
Note what happens when the Picard iteration is applied to G.

Example 3. Find the fixed points of the function

f (x) = x3 + 1.

Solution. The problem is to find all points x for which the
graph of the curve y = x° + 1 intersects the line y = x.
This geometric interpretation is especially useful in this
problem since the given curve is simply the cubic y = x3



K. PICARD'S FIXED POINT METHOD 121

translated up 1 unit. With this in mind it is not hard to
imagine a fixed point somewhere between -2 and -1. This can
be confirmed by evaluating the function at the points x = -2
and x = -l:

f (-2) - -7, and f (-1) = 0.

Since f(-2) < -2 and f(-1) > -1 the graph of y = f(x) moves
from a point below the line y = x to a point above it as x
varies from -2 to -1, and since f is continuous throughout
the interval, there must be a point of intersection.

Select |P| on the program menu, press |C|, enter

F(X) = X*X*X + 1, A = -2, B = 2,
and press I ESC I to complete the entry. If the entries are
correct, press |G| and then |f| to graph F.

i i i i i i i i

GRAPH OF F<X>

B = 2
H I = 9 . 0 0 0 0 0 0 0 1

PRESS RETURN TO CONTINUE

Screen 6. The fixed point of F(X) = X*X*X + 1
lies between X = -2 and X = -1.
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The display in Screen 6 confirms the existence of a
fixed point between -2 and -1, and indicates that this
should be the only one. However, the display also shows
that the Picard procedure must be applied to the inverse
function since the slope of the curve is greater than 1 at
the fixed point.

Press I RETURN L then |P|, and enter

G(X) = -((1 - X)^ (1/3)) C = -2 D = 0
When the entries have been checked, press |g| to go on, then
|G| to graph G. The display shows the fixed point and
indicates that the iteration will succeed if XO lies between
-2 and 0. Press I RETURN I and |j| and enter 1 for XO. Then
press IgI to begin the computation. The value -1.32471796,
which approximates the fixed point to 8 places, is reached
at step 12.

Now press iREIURNl to display the computations. When
you are ready, press IrEHJRNI again to prepare for the next
example.

Example 4. Find the fixed point of the function

f(x) = (2x3 - l)/(3x2 - 1)
that lies between -2 and -1.

Solution. Press |P| on the problem menu and enter

F(X) » (2*X*X*X - 1)/(3*X*X - 1),
A = -2, and B = -1. Press I ESC I, then |g| when the entries
are checked. Graph F to confirm the existence of a fixed
point in the interval. Then return to the problem menu,
press |lj, enter XO = -1, and press |G| to start the
iteration. The fixed point approximation, -1.32471796 to 8
places, is reached at step 6.

Had we been unable to see by inspection that F has a
fixed point between -2 and -1, it would first have been
necessary to conduct an independent search to localize the
fixed point and determine suitable values for A and B.
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7. CONNECTION WITH NEWTON'S METHOD
The functions in Examples 3 and 4 have the same fixed

point even though they are quite different. While such
behavior is often coincidental, in this case there is a good
reason.

First note that the equation

x3 + 1 = x
is equivalent to

If Newton's method is applied to

the algorithm

x3 - x + 1 = 0.

h(x) = x3 - x + 1,

generates the same sequence we would get by applying the
Picard method to the function

x - h ( x ) / h ' ( x )

(for any choice of xQ near the root). The function in
Example 4 was originally obtained by substituting the
formula for h(x) into this expression and simplifying the
r e s u l t :

x - h(x)/h'(x) = x - (x3 - x + l)/(3x2 - 1)
= (2x3 - l)/(3x2 - 1)

The iteration sequence in Example 4, which was based on
Newton's method, requires only 6 steps for the same accuracy
that required 12 steps in Example 3. This behavior is
typical: Newton's method is generally much faster than
Picard's method. The price paid for the gain in the
convergence rate, however, is that of having to find the
derivative when Newton's method is applied.
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8. HE SURE TO HAVE THE REAL INVERSE

Example 5. Find the solution of the equation

tanx = x
that lies between n/2 and 3n/2.

Solution. This example underscores the need for an
understanding of inverse functions. Press |P| on the
program menu, then |CI, and enter

F(X) = TAN(X) A = 1.8 B = 4.5
Then press I ESC I and graph F after checking the entries.
(The values 1.8 and 4.5 were chosen to provide a good
display while avoiding n/2 and 3n/2: because of
discontinuit ies, the inclusion of either value in the
plotting interval would result in an overflow error, an
il legal quantity error, or an artifact in the display since
the computer is programmed to connect the points it plots.)

h — h — i — h

A = 1.8
LO = -4.28626168

GRAPH OF F<X>

B = 4 . 5
H I = 4 . 6 3 7 3 3 2 0 5

PRESS RETURN TO CONTINUE

Screen 7. The graph of F(X) = TAN(X), 1.8<X< 4.5,
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The graph in Screen 7 shows a fixed point near 4.4 but
also shows that the slope of the curve exceeds 1 at that
point, so the iteration procedure must be applied to the
inverse function.

Now go back to the program menu, press |P|, and then
|c| to enter G(X). Special care is needed here. It is
tempting to use arctanx as the inverse of f(x), but
arctanx is the inverse of the function tanx restricted to
the interval -n/2 < x < n/2. The inverse of tanx over the
interval n/2 < x < 3n/2 is n + arctanx, so enter

G(X) = PI + ATN(X)
Take the values of C and D to be the LO and HI values
displayed in Screen 7, rounded as C = -4.3 and D = 4.6.
Then graph G, and take a moment to toggle between the graphs
of F and G.

GRAPH OF G<X)

C = —4.3
L O = 1 . 7 9 9 2 9 2 9 6

D = 4 . 6
H I = 4 . 4 9 8 3 2 8 2 9

PRESS RETURN TO CONTINUE

Screen 8. The graph of G(X) = PI + AIN(X).
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Return to the program menu and find the fixed point of
F by iterating G. With XO = 0, the iteration terminates at
step 9 with X = 4.49340945.

Example 6. Find the fixed points of the function

f(x) = ex/5.
Solution. The graph of

F(X) = EXP(X)/5,
over the interval 0 ^.X < 3 in Screen 9 reveals fixed points
near .2 and 2.5.

GRAPH OF F<X>

4 .01710739

PRESS RETURN TO CONTINUE

Screen 9. The function EXP(X)/5 has two fixed points.

The graph in Screen 9 also shows that the inverse
function will be needed to find the right-hand fixed point,
where the slope of F exceeds 1. Press I RETURN L then |P|
and |C|, enter
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G(X) = L0G(5 *X) C = .2 D ■ 4.0171
and graph G. Redraw the graph of F(X), and use the F-G
toggle to confirm the inverse function relationship.

Iteration on F(X) with XO = 0 returns the fixed point
.259171101 at step 14. Iteration on G(X) with XO = 2
returns the fixed point 2.54264135 at step 20.

PROBLEMS
In Problems 1-14, first graph f(x). Where needed, also
graph the inverse function g(x), and check the inverse
relat ionship graphical ly. Find al l fixed points of f by
iterating f or g, using values of Xq determined after
considering the graphs.

1. f(x) = x/4 + 1 2. f (x) - 2x/3 + 1
3. f (x) = 3x + 1 4. f (x) = y/x + 1
5. f (x) = COS X 6. f(x) = 1/x2
7. f(x) = 1/(1 + X2) 8. f(x) = 1/(1 + x)
9. f(x) - (x2 + l)/(2x - 1) 10. f(x) = 1 + x1/3

11. f(x) - 1 + \/x - 0.8 12. f(x) = 2 + arctan2x
13. f(x) = arctan(2 + x) 14. f (x) = 1 + ( l /2)s inx
15. f(x) = Let ft(x) = x3 - xz + .5

a) Graph f-, (x) on the interval. from -1 to 1.5.
b ) I t e r a t e f ^ x ) w i t h x Q = 0 to obtain the middle ol

the three fixed points!.
c) I terate f2(x) = (x - ,,5)/(x2 - x) with x0 = -0.8

obtain the one on the l e f t .»
d) I terate f3(x) = (x2 + x - ,,5)1/3 with xQ = 1 to

to

obtain the one on the right.
16. a) What happens in Example 1 when either iteration is

started with X0 = 0 or X0 = 1?
b) What happens when the iteration of F is started

with an X0 for which |X0| < 1, or an X0 for which
IXOl > 1? To find out, try X0 = -.5, -2, and 2.



L. Integration

1. PURPOSE
This program enables you to watch rectangular

approximations fill the region between the graph of a function
Y = F(X) and an interval on the X-axis as the corresponding
Riemann sums approach the value of the integral of F over the
interval •

2. DESCRIPTION
You enter the function, the interval's endpoint values,

and the number of rectangles. The program graphs the
function and calculates two Riemann sums: one obtained by
using the smaller endpoint value of the function on each
sub interval, the other by using the larger endpoint values.
You can toggle back and forth between the graphs of the two
sets of rectangles. For each subdivision, the trapezoidal
sum is given for comparison.

3. STEP BY STEP
Load the program, read the greeting messages, and move

on to the input menu shown in Screen 1.
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INTEGRAND AND LIMITS
F(X) = COS(X)

XMIN = 1.57079633
XMAX = 3.14159265

NUMBER OF SUBINIERVALS
N = 20

IcIhange entry |g|o on Igluir |J

Screen 1. The input menu.

Accept the current function and the current domain endpoint
values by pressing |g|. The message "PLEASE BE PATIENT..."
will appear as the computer begins to calculate the table of
function values for the ensuing graphics display, shown in
Screen 2.

Each rectangle in the approximation shown in Screen 2
is obtained by evaluating the function at the endpoints of
the subdivision interval that forms the base of the
rectangle and choosing the lower of the two function values
to determine the rectangle's height. The associated Riemann
sum is called the lower endpoint sum for the subdivision.

As Screen 2 shows, the lower endpoint sum in this case
is .642666503. For comparison, the trapezoidal
approximation sum for N = 20 is .995369339. The exact value
of the integral, by the way, is

r. cosxdx = sinxl^/2 = ° ~ ("D = 1*
—n/2

Now press |s| to see the upper endpoint sum, which uses
the upper endpoint function value in each subinterval to
determine each rectangle's height, as shown in Screen 3.
The trapezoidal and lower endpoint sums are shown for
comparison.
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1 1 1 — I , 1 1 1 i

-

1 1 1 —

\ i

1 1 1 1 1 t

U P P E R S U M T R A P E Z O I D A L L O V E R S U M
. 9 9 5 3 6 9 3 3 9 . 6 4 2 6 6 6 5 0 3 _

InIew n IsIwitch IcIhange function IqIuit LI

Screen 2. Lower endpoint sum with N = 20 rectangles.

U P P E R S U M T R A P E Z O I D A L L O W E R S U M
1 ^ 3 4 8 0 7 2 1 8 _ . 9 9 5 3 6 9 3 3 9 . 6 4 2 6 6 6 5 0 3 _
InIew n IsIwttch IcIhange function IqIuit IJ

Screen 3. The upper endpoint sum with N = 20
rectangles is 1.34807218.
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Now that both sets of rectangles (upper and lower) have
been drawn, yon may toggle between them by pressing |s|.
T r y i t .

Here are the results for seven different values of N:

N |1 UPPER TRAPEZOID LOWER
2 3.3321622 .487983861 -2.35619448
4 2.55904212 .881573567 - .795894986

10 1.68248225 .981425639 .280369027
20 1.34807218 .995369339 .642666503
50 1.14058484 .999259677 .857934551

100 1.07049496 .999814938 .929134918
280 1.02522108 .999976406 .974731729

TVo hundred eighty is the limit of the screen's resolution
and the largest value of N the program will accept.

The virtue of this program is its ability to calculate
Riemann sums and display rectangular approximations
simultaneously. As a calculator alone, the program is
relatively slow. It took more than half a minute to
calculate each of the upper and lower sums for N = 280 in
the table above, and they agree with the exact value of the
integral to only two digits when rounded. Using Simpson's
rule in the program INTEGRAL EVALUATOR produced the
following table in four seconds:

S2 - 1.43604331
S4 = 1.01277014
S10 = 1.00028138
S20 = 1.00001724
S50 « 1.00000044

The sum S50 compares very favorably with the exact value of
1 for the integral.
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PROBLEMS

Graph the upper and lower endpoint sums for the following
integrals for N = 4, 10, 20, and 50.

1 . f | d x = I n 2 2 . | c o s x d x = 0
J l x J - n

3 . J ( x 2 + l ) d x = | 4 . j " ( x - l ) d x = J

5 . \ s e c 2 x d x = l 6 . f I x l d x - 1J 0 J - l

7. J v/l - x2 dx = § 8. J \/l- (x/4)2dx =

2t t
9. f i[sinx + IsinxMdx = 2J0 z



M. Integral Evaluator

1. DESCRIPTION
This program evaluates integrals of the form

rf (x) dx
b

by the trapezoidal rule, Simpson's rule, and Romberg
integration, and enables you to compare the three results.
You key in a formula for f(x), the values of a and b, the
number of sub intervals for the trapezoidal and Simpson's
rules, and an error tolerance for the Romberg integration.
Special care is required if f has a removable discontinuity at
a orb. For such functions you must also supply the values of
f(a) and/or f(b) that make f continuous. When this is not
possible, you may still be able to transform the given
integral into one to which the program applies.

2. THE NUMERICAL METHODS
The trapezoidal rule and Simpson's rule are often

introduced in calculus with the definite integral. Under the
trapezoidal rule, for any choice of a positive integer n, the
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interval [a,b] is partitioned into n sub intervals of equal
length h - (b - a)/n by the points

xA = a + ih, i = 0, 1, . . ., n.

The ordinates of the curve y = f(x) above these points are
then given by

y£ = f (xj).

y = f(x)

Figure 1. Trapezoidal rule: The area under the
curve y = f (x) is approximated by summing areas of
trapezoids.

Figure 1 shows the case n = 4. In general, the nth
trapezoidal approximation to the integral is given by

Tn = ¥?o + 2yi + 2y2 + • • • + ZynHL + yn> •
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y = f(x)
Parabolic arcs

Figure 2. Simpson's rule: The area under the
curve y = f (x) is approximated by summing areas
under parabolic arcs.

For Simpson's rule, n must be an even positive integer
(Fig. 2), and the nth approximation to the integral is given
b y

Sn = f V 4V 2V 4*}+' • -+ 2 W 4Vl+ V •
No justification of either method will be given here.

We note only that the trapezoidal error is given by

af(x)dx - Tn = -(b - a)h2f(c)/12.

where a < c < b, and the Simpson error by

J*f(x)dx - Sn = -(b - a)h4f(iv)(c)/180

where, again, c is some point in the interval (a,b).
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Romberg integration comes from representing the error in
the nth trapezoidal approximation as a series in powers of
1/n2:

f A i A « A 3f(x)dx - t = 4 + 4 + 4 + • • .. (i)
a n n 2 n 4 n 6

where the A^ are constants that depend on a, b, and f but are
independent of n. The key idea is then to eliminate the
first term in the series to get an approximation whose error
decreases as 1/n4 instead of 1/n . To accomplish this, we
first substitute 2n for n in Eq.(l) to obtain

J! A l A « A g
f(x)dx -T.=^5- + -2I + -^ +

a 2 n 4 n 2 1 6 n 4 6 4 n 6

then combine the errors for n and 2n algebraically to obtain

A > 3 A , 1 5 A ,
= 3 f (x)dx + -r + 7

J - > t - 4 - n - 64T. - T =3 f (x)dx + —=r + 7 + . . . .2 n n J a 4 n 4 1 6 n 6

This equation suggests that if the quantity

Ti - <4T2n - V/3
is used to approximate the integral, then accuracy may be
improved, since the resulting error is of the order 1/n4.

The procedure by which we constructed T' , which is
called an extrapolation, may be iterated as follows: form

T2n - <4T4n " "W^-
then extrapolate again to form

t; - (i«2n - t;)/15.
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and continue the process to form the triangular array

T l
T 2 T {
T4 T£ TJ
Tg TJ TJ Ti»

The values along the nth row (counting from n = 0) can be
found by the formula

for i - 1, 2, . . ., n, where the notation

T(0)
2n

is interpreted to mean the trapezoidal approximation
T sub 2n.

The last value TJn' on the nth row is denoted by R^.
The program INTEGRAL EVALUATOR displays the values R^ as the
computation proceeds; the output appears on the screen in the
form

R0 = Tx
Rl = T{
R2 =TJ,

with the final approximation denoted by R.
The Romberg procedure is normally terminated after the

calculation of a preset number of rows or when a prescribed
error criterion is satisfied. INTEGRAL EVALUATOR uses a
combination of these conditions: for a user-chosen value
of e (whose computer variable name is E) the program
terminates when the condition IR^ - R^^l < e IR^I is
satisfied for any value of n > 2, or when the tenth row (with
n = 9) is computed, whichever comes first.
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You can find more about Romberg integration in Methods
of Numerical Integration, by P. J. Davis and P. Rabinowitz
(New York: Academic Press, 1975) •

3. STEP BY STEP
Load the program from the disk menu, read the greeting

message, and continue to the program menu shown in Screen 1.
The examples all start from this menu.

PROGRAM MEND
CHOOSE TYPE OF INTEGRAND

Icl .. F(X) CONTINUOUS
iDl .. F(X) DISCONTINUOUS AT A OR B

OR
111 .. ODTT
PRESS LETTER OF YOUR CHOICE |_|

Screen 1. The program menu.

e 1. Evaluate

f (1 + x2)dx

by the program's three methods, and compare the results.
Use n = 2, 5, 10, 20, 50 for the trapezoidal rule* n = 2, 4,
10, 20, 50 for Simpson's rule, and e = 0.00001 for the
Romberg integration.
Solution. Since the integrand f(x) = 1 + x2 is continuous,
press Icl on the program menu. When the integration method
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menu appears (Screen 2), press IjJ to select the trapezoidal
rule. The display will change to the one shown in Screen 3.

TYPE OF INTEGRAND
F(X) CONTINDOUS

CHOOSE INTEGRATION METHOD

III .. TRAPEZOIDAL RULE
HI .. SIMPSON'S RULE
HI .. ROMBERG INTEGRATION

OR
III .. PROGRAM MENU

PRESS LETTER OF YOUR CHOICE 1J

Screen 2. The integration method menu.

INTEGRAND AND LIMITS OF INTEGRATION
F(X) - 1 + X * X

A = 0 B= 1

TRAPEZOIDAL APPROXIMATIONS TO BE FOUND
T 2 T 5 T10 T 2 0 T 5 0

IcIhange entry IgIo on ImIenu lalurr Q

Screen 3. The initial trapezoidal method display.
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Since the default problem in the program is the correct
one for this example, press |G| to execute the integration
routine. The approximations are then computed and
displayed:

T 2 = 1 . 3 7 5
T 5 = 1 . 3 4
110 = 1.335
T20 - 1.33375
T50 « 1.3334

Three-place accuracy is obtained with 50 subintervals (the
exact value of the integral is 4/3).

Now press iREIURNl to return to the method menu. The
menu now includes the option

151 .. HARD COPY OF CURRENT RESULTS.
If your computer is connected to a printer and you know the
slot number of the interface card, you may obtain a copy of
the calculated values by pressing |h| , then the slot number,
then a IRETURNI to confirm your choice.

To continue the demonstration, press |S| for Simpson's
rule. The problem display will be similar to the one in
Screen 3, except with T replaced by S, and the second
approximation with n = 5 replaced by n = 4. (For Simpson's
rule, n must be even.) Press |G| for the integration. Each
of the computed values is 1.33333333, since Simpson's rule
returns the true value of the integral of a quadratic
function for all values of n.

Now continue with a IRkiukNI • The trapezoidal values
computed earlier will be reproduced below the Simpson's rule
values for comparison.

Continue by pressing IkkiukNI and then |R| for the
Romberg display shown in Screen 4.
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INTEGRAND AND LIMITS OF INTEGRATION
F(X) - 1 + X '▶ X

A = 0 B = 1

ERROR TOLERANCE
E = 1E-05

IcIhange entry IgIo on ImIenu Ulurr CI

Screen 4. The initial Romberg display.

Since the default value of e (shown in Screen 4 as
E = 1E-05, which represents 10~5) is appropriate for this
problem, press |G| for the integration. The resulting
display shows

RO = 1.5
Rl - 1.33333333
R2 = 1.33333333

R= 1.33333333.
The computed values are consistent with several facts:
that RO = Tl, Rl = S2> that three rows, the minimum, were
computed; and that the stopping criterion was satisfied
quickly, since R2 = Rl.

Now press I RETURN I to conclude the demonstration. The
display (Screen 5) will show the results of all three
methods. After viewing the display, press I RETURN I to
prepare for the next example.
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F(X) - 1 + X * X
A = 0 B = 1

T2 = 1.375 RO = 1.5
T5 - 1.34 Rl = 1.33333333
TIO - 1.335 R2 = 1.33333333
T20 = 1.3375
T50 - 1.3334 R= 1.33333333
S2 = 1.33333333
S4 = 1.33333333
SIO = 1.33333333
S20 = 1.33333333
S50 = 1.33333333
PRESS RETURN TO CONTINUE 1J

Screen 5. The results of all three methods,
displayed for comparison.

e 2. Evaluate

(x3 + 2x2 - 3x + l)dx*

by all three methods, and compare the results. Use the
values for n and e from Example 1.

Solution. Press |s| on the integration method menu
(Screen 2), then press |c| and enter

F(X) « ((X + 2)*X - 3)*X +1 A = 1 B = 4
Then press I ESC I to exit the change mode. After checking
the entries, press |G| for the integration. The value of
86.25 is obtained for each value of n used, with S20 showing
a small round-off error. Simpson's rule has returned the
exact value of the integral, 86.25, because the integrand is
a polynomial of degree less than four.
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Press IRETURNI, 111, and |G| for the trapezoidal
approximation. The error in T50 is 86.2671 - 86.25 = .0171,
which is less than .02 percent of the integral's true value.

Now find the Romberg approximation. The exact value of
the integral is returned quickly, after computation of the
minimum number of rows.

Finally, press I RETURN I to compare the results of all
three methods. Simpson's rule and Romberg integration are
superior to the trapezoidal rule for cubic functions as well
as for quadratic functions. The exactness of the Simpson's
rule approximation is predictable because the expression for
the error (Section 2) has f*iv'(c) as a factor, and the
fourth derivative of a cubic function is identically zero.

Now press IRkiukNI to return to the method menu for the
next example.

Example 3. Evaluate

x/i dxj*.
_ by al l three methods used in th is program. Use n = 2, 5,

10, 20, 100 for the trapezoidal rule, n = 2, 4, 10, 20, 100
for Simpson's rule, and e = .00001 for the Romberg

r - ^ i n t e g r a t i o n .

Solution. Press |t| on the integration method menu. Then
^ ^ p r e s s I c l a n d e n t e r

F(X) = SQR(X) A = 0 B = 4

Press I RETURN Is to accept the approximations T2, T5, T10,
and T20, and then press 111 lol lol I RETURN I to set T100 as
the last trapezoidal approximation to be found.

After checking your entries, press Ig| to start the
calculations. The values converge slowly, with
T100 = 5.33170358. Since

/*N/Idx = (2/3)x3/2|J = 16/3,
the approximation is accurate only to two decimal places.
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Press IRETURNI, then |s|, and ICI. Only the last value
of n need be changed, so press IkkiukNI repeatedly until the
cursor reaches this value, and press 111 lol lol IKkiukNI.
Now press |G| to integrate. The convergence is still
relatively slow, with S100 = 5.33268385, accurate to three
places.

Continue on to obtain the Romberg approximation. This
time the full 10 extrapolation rows are computed, with
R = 5.333286 accurate to 4 places. Note the substantial
amount of computing time. It takes about fifteen seconds to
go from R8 to R9. Finally, press I RETURN I to compare the
results of all three methods.

Example 4. (A Periodic Function) Evaluate

I (1 + xcos20x)dx
J0

using the values of n and e from Example 3.
Solution. Starting from the integration method menu, press
It| and |c|, and then enter

F(X) = 1 + X*C0S(20«X) A = 0 B = 2*PI
If the values of n are correct from Example 3, press I ESC 15
otherwise enter new values as necessary. When the entries
are checked, press |g| to integrate. Note that poor
approximations are returned for n = 2, 5,10, and 20, but
that 1100 = 6.28318508. The exact value of the integral is
2n, which is 6.28318531 to 8 places.

Now press IRETURNI. |s|, and |G| to find the Simpson's
rule approximation, with S100 = 6.28318507 only slightly
less accurate than 1100 •

Try the Romberg routine; a poor result is returned.
The reason is that the minimum number of rows to be
computed, which has been set at 3 in the program to give
fast results in many problems, is too low for this example.
It should be noted, however, that Romberg integration with
8 . 10"9 yields the final value R = 6.28318533, which is
closer to 2n than either T100 or S100.
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The gross inaccuracy of the trapezoidal and Simpson
approximations for the smaller values of n in this example
is explained by the fact that the integrand function
oscillates in its amplitude envelope twenty times in the
given interval .

y = 1 + x cos 20x

▶ x

Figure 3. Graph of y = 1 + x cos 2Ox. If n
divides 20, then the sample of function values
will be biased because the sampled points between
0 and 2n will all generate relative maxima.

Since the first four values of n all divide 20, the function
evaluations give relative maxima. (The results are
reasonable for small values of n that do not divide 20.)

Le 5. (A Removable Discontinuity) Evaluate
r1I sin(x)/x dx,

J 0
using the values of n and e from Example 3.
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Solution. Press Id| on the program menu (Screen 1) and then
press It| for the trapezoidal rule. If you have just come
from Example 4, the display will look like the one in
Screen 6.

INTEGRAND AND LIMITS OF INTEGRATION

F(X) = SIN(X) / X
A = 0 B = 6 . 2 8 3 1 8 5 3

TRAPEZOIDAL APPROXIMATIONS TO BE FOUND
T 2 T 5 T 1 0 T 2 0 1 1 0 0

REMOVE DISCCNITNUITIES

F ( A ) = 1 F ( B ) = . 8 4 1 4 7 0 9 8 5

IcIhange btcry IgIo on ImIenu IqIuit |~|

Screen 6. The initial trapezoidal display in Example 5.

The only value shown in Screen 6 that needs to be
changed for this problem is the value of B. Press lc| and
two IkkiukNIs to accept F(X) = SIN(X)/X and A = 0, and then
enter B = 1. Then accept the T-values with IrETURNIs. Note
the new message that appears when the cursor jumps to the
value of F(A):

IreturnI accept entry
I esc I automatic entry if f is continuous at a

entry limit : 12 characters
Since

U. §5£X1=1 and S?»-.841470985.
x - > 0 X *

the default values are correct. Accept them with |RETURN|s
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and press |G| for the computation.
Now run the calculation with Simpson's rule and the

Romberg method. Screen 7 shows how the results compare.

F(X) - SIN(X) / X
A = 0 B= 1

F(A) = 1 F(B) = .841470985
T 2 - 9.39793285 RO = .920735492
T 5 = 9.45078781 Rl = .946145882
T10 = 9.45832072 R2 = .946083004
T20 = 9.46020325 R3 = .946083071
T100 = 9.4608056

R= .946083071
S 2 = .946145882
S 4 = .946086934
S10 - .946083169
S20 - .946083077
S100 = .94608307

PRESS ANY KEY TO CONTINUE IJ

Screen 7. The final screen of Example 5.

e 6. (Another Removable Discontinuity) Evaluate

t2(ex - l)/x dx
0

using the values of n and e from Example 5.
Solution. Press Id| from the program menu (Screen 1), then
press It| and Icl, then enter

F(X) = 2*(EXP(X) - 1)/X
If you have just completed Example 5, the values shown

for A, B, and n should be correct. Make any necessary
changes. This will bring you to F(A). Since

lim 2(ex - l)/x = 2,
x->0
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enter F(A) = 1 and press lESCl when the cursor jumps to
F(B). The value 3.43656366 should appear on the screen for
F(B), since this is 2(e - 1) to 8 places. Carry out the
integrations to find T100 = 2.63581264 and S100 = 2.6358043,
with the Romberg value returned after only four rows.

7. (An Improper Integral - Substitut ion) Evaluate

(cosx)/>/l - x2 dx.
- 1

Solut ion. Since

r1
J - l

lim (cos x)/ v1 - x2 = + «>,
x->±l

the discontinuities are not removable. However, the
subst i tu t ions

x = s i n t , d x = c o s t d t

yield an equivalent integral that can be evaluated by this
program:

f 1 c o s x , ( * / 2 c o s ( s i n t ) , . . . . ( * / 2 , . . . . .i , ~ ~ j x - i ( c o s t d t ) = l c o s ( s i n t ) d t .
J - l V I - x 2 J - n / 2 > / l - s i n 2 t J - i r / 2

Press Icl on the program menu (Screen 1), and choose
any of the three integration methods. Enter
F(X) = OOS(SINX), A = -PI/2, and B = PI/2, and carry out
the integration. The correct value of the integral to 8
places is 2.40393943.

Le 8. (An Improper Integral - Integration by Parts)
Evaluate

I (cos x)/ y/x dx.
J 0

Solution. The problem can be handled using integration by
p a r t s . W i t h

u = c o s x d u = - s i n x d x
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d v = d x / y / x v = 2 s / x .
we find

J (cos x)/ Vx"dx = 2 y/x cos xli + 2| s/x*sinxdx0 ° J 0

= 2(cos 1 + 1 \/x sin x dx).
J0
—RA Romberg integration with e = 10 yields

f vTsinxdx = .3642219
J0

to seven places, from which

| (cosx)/ \/7dx = 1.80905J0
to five places.

PROBLEMS
Evaluate the following integrals by all three INTEGRAL

EVALUATOR methods, and compare the results. Experiment with
larger values of n and smaller values of e to achieve
desired accuracy. Caution: You will have to add
parentheses to some formulas as you key them in.

2 1
1 . f ( 1 - 3 x ) d x 2 . f ( x 3 + l ) d xJ 0 J - l

f ( x 4 + D d x 4 . f V x 2 + 1 d x• ' 0 J 0
3.

5 . f s / l - x 2 d x 6 . f > / x 3 + 1 d x
J - l J 0

r i t / 2 f j t7 . I c o s x d x 8 . I s i n x d x
J 0 J 0
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9.

11.

13.

15.

17.

18.

19.

21.

23.

a r c t a n x d x 1 0 . I l n x d x
1

• i4
J l

1 * f 1
e d x 1 2 . I s e c x d x

A J A

x s i n x d x 1 4 . I a r c c o t x d x
0 " 0

f11 4 . I a r c c o t x i
J0

f21 6 . IJ l
1 f 2

c o s h x d x 1 6 . I c o t x d x0 J l

2
[ ( c o s x - l ) / x ] d x0

2
[(tan(x - 2))/(x - 2)] dx1

1 f 1 0 2
x l n x d x 2 0 . I x z l n x d x

0 J l

0 fl
[ (a rc tanx ) / x ] dx 22 . I e1 / v /T dx- 1 J 0

x 2 y / l - x 2 d x 2 4 . f 1 / \ / l + c o s 2 x d x
A J A



N. Antiderivatives and
Direction Fields

1. PURPOSE
This program enables you to study solutions of the

differential equation
y# - f(x,y)

geometrically by constructing their graphs in the direction
field in a variety of rectangular regions in the xy-plane.

2. WHAT DIRECTION FIELDS CAN SHOW
The direction field of a first order differential

equation
y' - f(x,y)

often reveals important information about the equation's
solutions. It can reveal zones in which the solution curves
decrease, or increase, show upper and lower bounds for
solution curves, suggest the asymptotic behavior of
solutions, and indicate the dependence of solutions on
initial conditions. It thus serves as a useful complement to
analytic and numerical techniques, and can be an especially
valuable source of information when analytic techniques fail.

153
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3. DESCRIPTION
This program plots direct ion fields of di fferential

equations of the form DY/DX = F(X,Y) inside a rectangular
region XMIN < X < XMAX, YMIN < Y < YMAX. You enter the
formula for F and choose the bounds for X and Y. Once the
field is displayed, you may request the graph through any
point in the region. The portion of the solution curve that
lies within the region is then shown against the direction
field. Several solution curves may be shown at once. At
any time, you may clear the screen of solution curves
without losing the field elements, or request a new region
in which to view the field.

4. STEP BY STEP
Load the program, read the greeting messages, and press

IRETURNI to display the equation and domain menu shown in
Screen 1.

EQUATION AND XY-DOMAIN
DY/DX = X - Y
X M I N = - 3 X M A X = 3
Y M I N = - 3 Y M A X = 3

IcIhange entry IgIo on lllurr CI
Screen 1. The equation and domain menu.

Example 1. The differential equation
DY/DX = X - Y, -3 < X < 3, -3 < Y < 3.

Accept the function and values shown in Screen 1 by
pressing |g| , and spend a moment with the resulting display,
shown here as Screen 2. This display shows the direction
field of DY/DX = X - Y over the chosen region, along with
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the visible portions of the X- and Y-axes. Each edge of the
screen is divided by marks into ten congruent intervals,
each six tenths of a unit long in this case because the
rectangle is six X-units wide by six Y-units high.

\ _ \ \ \ \ \ x \ \ \ \ \ -̂  "V. "**■- - 1

' ' ' • > • : " i 1 ' * • . 1 \ \
« _ V H H « i - . t

T . V . ••v "V "-- -. -^ — — -
_ \ 1 T * ' " * * \ ^ ^ S , \ ""=-= --. --: — — — -" ^ y y

\ \ \ \ \ \ \ V " V " • * « "■-» -, — _ ^ .-- s* y y /

- l - v \ x V % * s ^ * - -fc_ —» — - - j ?
.* * _«»

\ s . s V V - v - — - - - - —• .*-■ y y y / / / / /

J S v -^ -^ y y y / / / / / / f
: — s y y / / / / / / t t t
\ _ . „ . . . _ . . . ^ ^ . - X s y / / / / / t f i f t f

— . - r - _ - » * ^ y y / . \
t f / / i f f i

DY/DX = X - Y
-3 < X < 3 -3 < Y < 3

IslomnoN IcI lear InIew field IqIutt

Screen 2. Part of the direction field of DY/DX = X - Y.

Pressing |s| enables you to enter the coordinates of a
point through which you wish to plot a solution curve. To
see how this works, press |s|, and when the line

XO = 0 YO = 0

appears near the bottom of the screen press two IrETURNIs.
The computer will plot the antiderivative of DY/DX = X - Y
that passes through (X0,Y0) = (0,0). After noting the
agreement between the solution and the direction field,
press Icl to clear the curve from the screen.
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Now press

III IreturnI El HI HI IreturnI
to plot the solution through the point (0,-.5). Press |s|
again and enter the coordinates of (0,-2). Repeat with
(0,2) and (2,-2). The display will now look like the one in
Screen 3.

DY/DX = X - Y
- 3 < X < 3 - 3 < Y < 3
XO = 2 Y0 = -2
IsIolutton IcIlear InIew field IqIuit IJ

Screen 3. Solution curves through the points
(0 , - .5) , (0 , -2) , (0 ,2) , and (2 , -2) .

After plotting these solution curves, and perhaps a few
others, you may notice that the curves all seem to be
asymptotic to a single diagonal line. To explore the
possibility of there being a solution of the form
Y = MX + B, we substitute Y and its derivative DY/DX = M in
the differential equation DY/DX = X - Y. This gives
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DY/DX = X - Y,
M - X - (MX + B),
M = X — MX — B,

(1 - M)X = M + B.
The last equation here will hold for all X if (and only if)
M = 1 and B = -1. The function Y = X - 1 is therefore a
solution of the differential equation, and the graph of this
function is the line we seek. Add it to the screen by
requesting the solution through the point (0,-1).

. \ \ \ \ V \ \ \ \ V
A \ \ \ \ ^ ^ ^ ^ N
_ \ . \ \ \ \ \ s X v ^
\ \ \ V, \ % % -- — —

V s

I I I

\ \ X X ■ * - —
V v —. — — —

0
/

~*g*ry' j> s s
S / V / / / /

O / / / / / j
/ / / / / /
/ / t t f f f■ •■

J * f
' * t f
t t f
t t f■

DY/DX = X - Y
- 3 < X < 3 - 3 < Y < 3
XO » 0 Y0 = -1
Is Io lu t ion Ic I lear In Iew fie ld lo ju r r |_ |

Screen 4. A line of constant slope in a direction
field is cal led an isocl ine. In this case, the
isocline Y = X - 1 is also a solution curve.

As we can see in Screen 4, the solution curve Y = X - 1
divides the direction field into two zones. Solutions
through points below this line have slopes greater than 1
and are increasing functions of X. Solution curves through
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points above the line Y = X - 1 appear to be concave up, as
is confirmed by the inequality

y» - 1 - y' - 1 - (z - y) - y - (x - 1) > 0.

For more information about the solutions of this equation,
see Article 18.14 of Calculus and Analytic Geometry. Sixth
Edition, by G. B. Thomas, Jr. and R. L. Finney (Reading,
Mass.: Addison-Wesley Publishing Company, Inc., 1984).

Now press InI for a new field, and work Example 2.

2 . The indefin i te in tegra l

[fa'dxJ«
is the family of functions y = F(x) + C whose derivatives
are y' = 3x2. Plot the direction field for y' = 3x2 in the
rectangle -3 < x < 3, -10 < y < 30, and investigate the
solution curves.
Solution. Starting from the equation and domain menu
(Screen 1), enter DY/DX = 3*X*X and bounding values for X
and Y and watch the direction field develop (Screen 5) • The
X-marks in Screen 5 ate still .6 apart, but the Y-marks now
represent 40/10 = 4 units. Press

Isl lol lol IreturnI
to see the solution through the origin. Then repeat the
process to add the curves through the points (0,-5), (0,10)
and (0,20). These curves all belong to the family

j<3 x d x = x + C , ' " "■ ^
and correspond to taking C = 0, -5, 10, and 20.

4 .
To stop a plot in progress, press I ESC I. You may then

quit (Ifil) or return to the function screen (|N|), as
desired.
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DY/DX = 3*X*X
-3 < X < 3 -10 < Y < 30

IsIolutton IcIlear InIew field Iglurr IJ

Screen 5. The field for DY/DX = 3«X*X, with solution
curves through (0,0), (0,-5), (0,10), and (0,20).

The program will not draw solution curves through off
screen points. It will also ignore random keystrokes when
the direction field is first displayed, responding only to
III, Icl, |N|, and |Q|.

The program accepts "PI" for n in function formulas (as
in COS(PI*X)), window parameters, and point coordinates.

The left and right arrow keys I <rj and l^> I, can be
used to edit inputs.
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PROBLEMS

In Problems 1-15 plot the direction field of the
differential equation in the given window. Then plot the
solution curves that pass through the given points.

1. a) y' - x + y, -3 < x < 3, -3 < y < 3
P o i n t s : ( - 3 , 0 ) , ( + 2 , 0 ) , ( ± 1 , 0 ) , ( 0 , 0 )

b) What isocline is also a solution curve?
2. a) y' = x, -3 < x < 3, -3 < y < 3

P o i n t s : ( - 3 , 0 ) , ( ± 2 , 0 ) , ( ± 1 , 0 ) , ( 0 , 0 )
b) Ident i fy the isocl ines ( l ines a long which

y' = const.) .
3. a) y' = y, -3 < x < 3, -3 < y < 3

P o i n t s : ( 0 , . l ) , ( 0 . . 2 ) , ( 0 , 1 ) , ( 0 , - . 5 )
b) Ident i fy the isocl ines ( l ines a long which

y' «= const.).
4. y' - §> -1 < x < -.1, -1 < y < 1

P o i n t s : ( - . 5 , 0 ) , ( - . 2 , 0 ) , ( - . 3 , 0 )
5. y' = |, -3 < x < 3, -3 < y < 3

Po in t s : ( 1 ,1 ) ( ( 1 , -1 ) , ( 1 ,2 )
Identify the solution curves.

6. y' = xy, -3 < x < 3, -3 < y < 3
P o i n t s : ( 0 , 0 ) , ( 0 , ± 1 ) ( ( 0 , ± 2 )

7. y' = 2x - y, -3 < x < 3, -3 < y < 3
Points : (0 ,+ 2) , (0 ,±1) , (0 ,0)

8. y' = x2 + y2, -3 < x < 3, -3 < y < 3
Po in ts : (0 ,+ l ) , (0 ,1 .5 ) , (0 ,2 ) , (0 ,3 ) , (2 ,0 )

9. y' - (x + y)2, -3 < x < 3, -3 < y < 3
Po in t s : ( 0 ,0 ) , ( - 1 ,1 ) , ( 1 ,0 )

10. y' = y2 + 1, -6 < x < 6, -6 < y < 6
Po in t s : ( 0 ,0 ) , ( 0 ,±3 .14 )

11. y' = 4y(l - y), 0 < x < 2, -0.5 < y < 2
P o i n t s : ( 0 , . l ) , ( 0 , . 0 1 ) , ( 0 , - . l )
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12. a) y' = (y- 2)/(x - 1), 1.1 < x < 3, -3 < y < 4
Po in t s : ( 2 .0 ) , ( 2 .5 ,0 ) , ( 2 .5 ,2 ) , ( 1 .2 ,0 ) ,
(1-5,0)

b) Repeat (a) for -3 < x < .9, -3 < y < 4.
c) The isoc l ines of th is d i rect ion field are the

lines (y - 2)/(x - 1) = m. Through what point do
they all pass?

13. y' = (x - y)/x, .1 < x < 3, -3 < y < 3
Po in t s : ( 1 ,0 ) , ( . 5 ,0 ) , ( 1 ,1 ) , ( 2 ,1 )

14. y' = (4x + 3y)/(3x + y)( -3 < x < 3, -3 < y < 3
P o i n t s : ( ± 1 , 0 ) , ( + 2 , 0 )

15. y' = (cos nx)/ Vy, -1 < x < 2, .1 < y < 2
P o i n t s : ( . 5 , 1 ) , ( . 5 , 1 . 5 ) , ( . 5 , . 5 )

16. Numerical antiderivative graphers sometimes encounter
difficulty when the slope y' at a point on an integral
curve is large. Here is an example. A straight
forward integration shows that the solutions of the
equation yy' = 1 are given by the formula y2 = 2x + C.
The solution curves are parabolas symmetric about the
x-axis. When the computer program described in this
chapter is used to plot solutions of the nearly
equivalent differential equation y' = 1/y in a region
about the x-axis, however, the curves go somewhat
astray. To find out what happens, plot the direction
field for DY/DX = 1/Y over the region -3 < X < 3,
-3 < Y < 3 and request the solution curves through the
points (1,1) and (1,-1).

Each indefinite integral jf(x)dx in Problems 17-21 is
a family of functions y = F(x) + C. Plot the direction
field for y' = f(x) in the given rectangle. Then plot the
members of the family y = F(X) + C that pass through the
given points.

17. jcos2xdx, 0 < x < 2n, -4 < y < 4
P o i n t s : ( 0 , 0 ) , ( 2 , 2 ) , ( 2 , 3 ) , ( 0 , - 3 ) , ( 0 , - . 6 )
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18. j V2x + 1 dx, .5 < x < 12, 0 < y < 25
Points: (.5,1), (.5,2), (.5,10)

19. J(3 sin2x + 4 cos 3x)dx, 0 < x < 2n, -5 < y < 5
Points: (0,0), (0,-4)

20. J(x - 7)3dx, 5<x<9, -3<y<3
Points: (7,0), (7,-2), (6,-2), (5.5,-2.5)

21. a) J(x - 3 sin4x)dx, -5 < x < 5, -9 < y < 9
P o i n t s : ( 0 , 1 ) , ( - 5 , 0 )

b) Repeat (a) for -7 < x < 7, -20 < y < 20
c) Repeat (a) for -10 < x < 10, -50 < y < 50



O. Partial Fraction
Integration Problems

1. PURPOSE
This program enables you to practice integrating

rational functions by the method of partial fractions.

2. DESCRIPTION
The program generates partial fraction integration

problems one at a time for you to solve. You may determine
in advance whether the problems are to contain linear factors
only or quadratic factors as well. You may also decide
whether to allow repeated roots.

Once these choices have been made, the screen will
display the integral of an appropriate rational function of X
along with a box in which your answer will appear as you key
in the value of the integral. If you wish to change what you
have keyed in, you may edit character by character or press
I ESC I to clear the box and start the answer over. When you
are satisfied with your answer, press IkkiuKNI to signal that
your answer is complete. The computer will then say whether
your answer is right or wrong.

If your answer is right you may press |A| for another
problem of the same kind, press |m| to call up the problem
type menu to change the problem type, or press \Q\ to quit.

If your initial answer is wrong, the correct partial
fraction decomposition of the integrand will appear on the

163
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screen. You may then enter a new answer for the value of the
integral. If your second answer is wrong, the value of the
integral will appear on the screen and you may proceed to
press |A|, |m|, or Igl as before.

If you need help, type HELP in the current answer box.
The computer will treat this as a wrong answer and make one
of the two responses just described.

The computer keeps a running score of the number right
out of the number tried.

You will need a pencil and paper.

3. STEP BY STEP
Load the program from the disk menu, read the greeting

message, and press I RETURN I to see the problem type menu:

<PR0BLEM TYPES>

1. .. LINEAR FACTORS ONLY
2. .. QUADRATIC FACTORS ONLY
3. .. LINEAR AND QUADRATIC FACTORS

4. .. QUIT, LEAVE PROGRAM
PRESS 1, 2, 3 OR 4

Screen 1. The problem type menu lets you choose
the kind of problem you want to practice with.

To begin cautiously, you might press 111 for linear
factors only. Once your selection is made, the prompt

DO YOU WANT TO ALLOW
REPEATED FACTORS? (Y/N)

will appear on the screen. When it does, press |Y| or InI
to indicate your choice of yes or no.
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When your first problem appears, work out the partial
fraction expansion of the integrand on a piece of paper and
evaluate the integral. Then check your answer by typing it
into the computer and pressing I RETURN I. The answer will
appear on the screen as you type. You can correct typing
mistakes by backing up and striking over (press \<-\ to back
up and \zl\ to move forward again) • You can also press
I ESC I to clear the entire box and start over. Only when you
are satisfied with how the answer reads on the screen should
you press I RETURN I.

Your problem sequence will probably differ from the one
we encountered while preparing the present chapter because
the order in which the problems are presented is random.

Screen 2 shows our first problem. When we asked for
help, the computer responded by expanding the integrand by
partial fractions (Screen 3) • We then worked out the
integral on paper, keyed in our answer, and were told it was
correct (Screen 4).

1 > r 4 4 * X ^ 2 - 4 5 * X - 1 5 dXr 6 * X ~ 3 - 7 * X ^ 2 - 3 * X

i s a ^ M M s a a i u h e n i t i s c o m p l il a a s t o e r a s e * a n d s f c a iU t o r e t u r n t o m a i l
P r e s s : l a a r t M M I t i l g l u h e n i t i s c o m p l e t ea r t o v e rr e t u r n t o m a i n m e n u .

Screen 2. The computer is waiting for an answer.
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1 > f 4 4 * X ^ 2 - 4 5 * X - 1 5
6 * X ~ 3 - 7 * X ~ 2 - 3 * X d X

= HELP

I2 * X - 3 3 * X + 1
+ ( 5 / X ) d X I S I U U

P r e s s u h e n i t i s c o m p l e t et o e r a s e a n d s t a r t o v e it o r e t u r n t o m a i n m e n u

Screen 3. The hint after the first wrong answer.

1 > r 4 4 * X ~ 2 - 4 5 * X - 1 5
6 * X ~ 3 7 * X ~ 2 - 3 * X d X

= HELP

f 4
2 * X - 3 3 * X + 1

+ < 5 ^ X > d X I S I U U

L 0 G < A B S < 2 * X - 3 > >+ < 4 / 3 > * L 0 G < A B S < 3 * X+ 5 * L O G < A B S < X > > + 1 >>

S C O R E ' . 5 r i g h t o f 1 t r i e d = 5 0 5 :P R E S S 1 Q n o t h e r p r o b l e m . , l i J e r t u ; H t o p

Screen 4. Answering the first problem correctly
on the second try gives a score of 50%.
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What about the arbitrary constant? The computer will
accept any constant or letter you wish to add to the
antiderivative of the integrand, but does not require you to
add one. In our next answer we added an arbitrary
constant C:

Screen 5. The program accepts arbitrary constants.

The answer you type in may be "stacked," as in
Screen 4, or "strung out" as in the next display.

4 > r - 7 * X ^ 2 - 6 * X + 1 8
3 * X ~ 3 + 1 5 * X ~ 2 + 1 8 * X d X

= HELP

= f - 3 - 1+
X + 3 3 * X +■ 6

+ < 1 / - X > d X

-3*L0G< ABS< X+3 > >+<-1/3 >*LOG< ABS< 3*X+6 > >+LOG< ABS< X > >

Screen 6. You do not have to worry about line
breaks when you type your answer.
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When we asked for help with the next problem, the
computer responded by showing how to write this particular
denominator as the sum of two squares, so we knew we had an
arc tangent to deal with.

11 > r - 3
X ~ 2 - 8 * X + 4 1 d X

= HELP

= f - 3
< X - 4 > ^ 2 + 2 5 d X

-3 /5*ATN< < X-4 > /5 >

S C O R E 4 . 5 r i g h t o f 1 1 t r i e d * 4 0 . 9 %P R E S S 1 B fl n o t h e r p r o b l e m . U U e n u , H t o p

Screen 7. An arc tangent.

4. CONCLUDING REMARKS
In Applesoft BASIC, the natural logarithm of X is

LOG(X), the absolute value of X is ABS(X), and the arc
tangent of X is AIN(X). See Appendix 2 for other function
formulas.

The program separates the two steps in partial fraction
integration problems, the decomposition and the integration.
The two-step/two-try format enables you to practice the
entire process or work on either part separately.



P. Conic Sections

1. PURPOSE
This program enables you to see the effects of selected

rotations and translations of the coordinate axes on the
equations of l ines, circles, parabolas, ell ipses, and

— hyperbolas in the car tes ian p lane.

- 2. DESCRIPTION
When a conic (conic section) is selected from the

program menu, the computer displays the axes shown in Fig. 1

Positive y-axis

-I Positive x-axis

> Scaling marks

Figure 1. The coordinate axes on the display
screen are movable.

in a standard position with respect to the selected conic.
We call this position the init ial position of the axes. The
equation of the conic in the cartesian coordinate system
defined by the axes appears near the bottom of the screen.

169
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The axes may be rotated clockwise or counterclockwise in
increments of fifteen degrees, and may be translated right,
left, up, or down in steps that are the size of the current
axis scaling unit. (We shall have more to say about this
u n i t l a t e r . )

The conic remains stationary as the axes move. After
each motion, the screen displays the equation of the conic in
the new coordinate system.

3. SIEP BY STEP
Load the program from the disk menu, read the greeting

message, and go on to the menu shown in Screen 1.

IjJlNE
IgllRGLE
l||ARAB0LA
l||LLIPSE
|||YPERBOLAIfilurr

Screen 1. The conic section menu.

Press l£l to request the parabola shown in Screen 2.
Its equation in the initial coordinate system is
T + 0= (X + 0)A2, or Y - X2.

Sealing. The statement UNIT = 1 in Screen 2 tells us
that the marks on the axes currently represent a distance of
one unit from the origin. To investigate the effect of
changing scale, press IS|. The writing at the bottom of the
screen will immediately change to

NEW UNIT = 111
ENTER A NUMBER BETWEEN .1 AND 25.
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W
Y + O = (X + OU 2

(|||OS, IHlEG) ROTATIONImIenu IsIcale IaIxis dntt = l
lu|p_IlJeft IrIight

IJ IdIown

Screen 2. The equation of the parabola in the
initial coordinate system is Y + 0 = (X + 0)^2.

Y + 0= (X + 0) ^ 2

|U|P_
(Ipjos, InJeg) rotation IlJeft_ IrIight
ImIenu IsIcale IaIxis unit = .5 IJ IdIown

Screen 3. Changing the scale does not change the
parabola's equation. It changes the "magnifica
tion" of our view of the parabola.
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Enter .5 by pressing Fl IJI I RETURN I. The equation of
the parabola will reappear as the parabola is redrawn in the
new scale (Screen 3).

The marks on the axes now represent a half-unit,
instead of a unit, and the parabola appears larger than it
did before. The equation of the parabola has not changed,
however. We have not moved the axes, but only changed the
scale to take a closer look at the region around the origin.

Translation. Now press |u| three times (with pauses in
between) and |l| four times to translate the axes three
units up and four units to the left. Watch what this does
to the equation of the parabola (Screen 4)•

Y + 1.5 = (X - 2)^2

|U|P_
(l|los, IhIeg) rotation I]Jeft_ IrIightImIenu IsIcale IaIxis unit = .5 IJ IdIown

Screen 4. The result of translating the axes to a
position three units above and four units to the
le f t o f t he i r i n i t i a l pos i t i on .

The equation of the parabola shown in Screen 4 is not
Y + 3 = (X - 4)/\2, but rather Y + 1.5 = (X - 2)/s2. The
vertical component of the axis translation was
(+3)(.5) = 1.5, three times the current scale unit of .5.
The horizontal component of the axis translation was
(-4)(.5) = -2, accomplished by taking four steps of size .5
to the le f t .
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Now press |A| to extend the axes across the screen.
This will show their geometric relation to the parabola more
clearly (Screen 5).

1 i \ /1

Y + 1.5 - (X -

(IpIos, InIeg)
ImIenu IsIcal

• 2)/n2

rotation
£ IaIxis unit =

IuIp
IlIeft IrIight

.5 IJ IdIown

Screen 5. The axes extended.

X + 1.5 = (Y + 2)^2
IuIp_(Ip_Ios, InJeg) rotation IlJeft_ IrIight

ImIenu IsIcale IaIxis unit = .5 IJ IdIown

Screen 6. The result of rotating the axes in
Screen 5 a half-turn counterclockwise, or +90°.
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Rotation. To continue the demonstration, press |p| six
times, pausing after each press to read the parabola's
equation in the new reference frame. Each keypress rotates
the axes +15°, or fifteen degrees counterclockwise. The net
result is a half-turn counterclockwise, as shown in
Screen 6.

Press |M| to return to the conic section menu, and
select the program's standard hyperbola (Screen 8) by
pressing |H|. The hyperbola's equation,

2 2
2 0 1 0 " 1,

is displayed as

.05 * (X + 0)^ 2 - .1 * (Y + 0)/v2 = 1

to fit it on a single line. The scale has automatically
returned to UNIT = 1.

.05 * (X + 0)is 2 - .1 * (T + 0)A2=1
|U|P_

(l| los, IhIeg) rotation yEFT_ IrIightImIenu IsIcale IaIxis unit - 1 IJ IdIown

Screen 7. The initial coordinate system for the hyperbola.
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To conclude the demonstration, press |N| three times,
pausing after each keypress to read the hyperbola's new
equation. The net result of the three negative fifteen-
degree rotations will be a -45° rotation, or a rotation of
forty-five degrees clockwise, as indicated in Screen 8.

*»*̂ y
\
i.

\ X
y ~

..y

-.02X^2 + .15XY - .03YA2 - 1 =

(IFIos, InIeg) rotation
ImIenu IsIcale IaIxis unit = 1

' 0
IuIp

IlIeft IrIight
IJ IdIown

Screen 8. The equation of the hyperbola after the
initial coordinate system has been rotated -45°.

For a final view of the hyperbola, press |A| to extend
the axes to the limits of the display.
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In Problems 1-5, display the conic by pressing the key
indicated on the conic menu of the program. Then display
the conic again with the given scale units.

1 . L i n e ! U N I T « 2 , . 5 , . 1
2 . C i r c l e : U N I T = 2 , . 5
3 . Parabo la : UNIT ■ 2 , .5 , .1
4 . E l l i p s e : U N I T = 2 , . 5 < — ^
5. Hyperbola: UNIT » 4, 2, .75

In Problems 6-10, experiment to find a sequence of axis
rotations and/or translations that will move the coordinate
axes from their initial position to a position in which the
given conic has the given equation. In each case, use the
default axis scale, UNIT = 1.

6. The l ine y » 0:

a ) y - x - 1 b ) y - - x - 1 . 4 1
c ) x - - 1 d ) y = x + 1 . 4 1

7. The circle x2 + y2 = 9:
a) (x - 2)2 + y2 = 9 b) (x - 2)2 + (y - 2)2 - 9
c) (x - 2.83)2 + y2 - 9
d) (x - 2)2 + (y + 2)2 - 9

8. The parabola y « x2:
a ) y + 3 = x 2 b ) - y + 3 - x 2
c) y - 3 = x2
d) .5x2 - xy + .5y2 - .71x - .71y - 0
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9. The ell ipse .05x2 + . ly2 = l:
a) .lx2 + .OSy2 = 1
b) .05x2 + .02xy + .ly2 - 1 - 0
c) .05(x + l)2 + .l(y + l)2 - 1
d) .05(x + 2)2 + .l(y - 3)2 = 1

10. The hyperbola: .05x2 - .ly2 = 1:
a) -.lx2 + .OSy1 - 1
b) -.lx2 + .05(y - l)2 = 1
c) -.l(x + 4)2 + .05(y + 10)2 = 1
d) .05(x - l)2 - .ly2 - 1

11. Start ing wi th the axes in their in i t ia l posi t ion, say
what effect a 180° rotation has on the initial equation
of the (a) l ine, (b) circle, (c) parabola, (d) el l ipse,
(e) hyperbola.

12. Start ing with the axes in their in i t ia l posi t ion, say
what effect a 90° rotation has on the initial equation
of the (a) l ine, (b) circle, (c) parabola, (d) el l ipse,
(e) hyperbola.

In Problems 13-17, identify the conic and move the
coordinate axes on the screen to a position in which the
conic has the given equation. Problem 17 requires a change
of scale.

13. .05(x -- 7 > 2 - .Ky)2 = 1
14. y = x -- 7.07
15. .l(x + 3)2 + .OSy1 = 1
16. y= (x - I D 2
17. y+ .1 = x2



Q. Sequences and Series

1. PURPOSE
This program enables you to look for numerical and

graphical indications of the convergence or divergence of an
infin i te sequence or ser ies . I t w i l l a lso p lo t the in i t ia l
terms of a series and the series' partial sums in a common
graph.

2. DESCRIPTION
The program generates terms of one or two sequences and

graphs the values of successive terms while you watch.
Pressing the space bar stops or restarts the plot. A
numerical display shows the values of the terms currently
being plotted. The init ial number of terms is fifty. When
the graph is completed, you may change scale, return to the
menu, or request the next fifty terms.

Sequences are entered either by giving recursive
formulas and first terms or by giving formulas for Nth terms
and specifying initial values of N.

3. STEP BY STEP
Load the program from the disk menu, read the greeting

message, and press IkkiuknI to begin. The computer will ask
whether you want one sequence, or two (Screen 1).

179
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How

|<INPUTTING SEQUENCES)I

many sequences? (1 or 2) _

Screen 1. The choice here determines the number
of sequences the computer will ask you to define,
and will subsequently display.

Example 1. Graphing the Alternating Harmonic Sequence.
The prompt in Screen 1 asks you to press llj or |21 •

Press 111, and then IkkiuknI to accept the default formula,

A(N) = ((-1)a(N + 1))/N,
for the Nth term of the alternating harmonic sequence.
After a brief pause, the question

Start sequence at N = ? _
will appear toward the middle of the screen. To start the
alternating harmonic sequence at its first term, 1, press
111 IRETURNI. After flashing the message

<0NE MOMENT PLEASE),
the l ines

VERTICAL SCALE
YMIN - -1
YMAX = 3/2

will be added to the bottom of the screen. This is the
point at which you determine the vertical dimensions of the
horizontal strip in which the points (N,A(N)) will be
plotted. The display should now look like the one in
Screen 2.
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klNPOTTTNG SEQUENCES) I

How many sequences? (1 or 2) 1
DEFINE A(N) - ((-1) a(N + 1))/N
Start sequence at N = ?1

VERTICAL SCALE
YMIN = -1
YMAX = 3/2

Screen 2. With a formula for A(N) entered, along
with the initial value of N, it remains only to
set the vertical scale for the graph.

N = 1 T O 5 8Y=l . 5

■#-

9 • - ^ J £ + : f * + * ^ + : f ^ + ^ + 4 u ^

+
J 1 1 1 1 1

Y = - l N = 5 9
< + > A<N> = << -1 >^<N+1 >>/N
A < 5 6 > = - . 0 2
P r e s s I f M ^ i fl i a i H F o r 5 0 m o r e v a l u e s

H h a n g e s c a l e o r l i l e n u

Screen 3. The points (N,A(N)) are plotted with
plus marks (+) .

Press IkkiukNI twice to accept the present values. The
computer will draw axes and plot the points (N,A(N)) for
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N = 1 to 50. You will see the points plotted from left to
right across the screen as a numerical counter on the lower
left runs through the values of A(l), A(2), . • ., A(50).
Press any key to interrupt the plotting or start it again.
When all fifty terms have been plotted, the message PRESS
ANY EEY TO STOP/RESTART PLOT, which was present at the
bottom of the screen as the graph evolved, will be replaced
by a short menu. The final display will look like the one
in Screen 3.

Once the display in Screen 3 has appeared, pressing |c|
will enable you to change the values of YMIN and YMAX and
replot. Pressing I RETURN I will plot the terms from N = 51
to 100. Pressing |m| will call up the options menu shown in
Screen 4. To conclude the example, press |lf|.

kCURRENT DISPLAY) I
A(N) = ((-l)/s(N + 1))/N

N - 1 TO 50
YMIN = -1
YMAX » 1.5

l<0PTI0NS>l
111 SEE CURRENT DISPLAY
|21 GRAPH 50 MORE VALUES
l|| CHANGE SCALE
l£| CHANGE SEQUENCES
l5l OLTTT

Press the number of your option choice.

Screen 4. The options menu.

Press Ul to change sequences, and work through the
next example.
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Example 2. Graphing the Partial Sums of the Alternating
Harmonic Series.

Starting from the operations menu displayed in Screen 4,
press |4| to change sequences. Then press |2| when asked
"How many sequences?" and press I RETURN I to accept the
formula

A(N) = ( ( -DMN+ 1 ) ) /N
for the Nth term of the alternating harmonic sequence. The
l i n e

B(N) = B(N - 1) + A(N)
will be added to the screen. It shows the recursion formula
for generating the sequence B(N) of partial sums of the
sequence A(N), or, as you may wish to call it, the sequence
of partial sums of the series 2 A(N) •

Press IkeiukNI to accept the formula for B(N) • When
the prompt

Start sequence at N - ?_

appears, press Ul iREIURNl to indicate that the summation
should begin with N = 1. The computer will then ask for the
value of B(0) by adding

INITIAL VALUES
B(0) « 0

to the screen. Why B(0)? The formula for B(N) defines B(N)
in terms of B(N -1) . In part icular, B( l ) is defined in
terms of B(0) as

B(l) = B(0) + A(l).
You must enter a value for B(0) before the computer can
generate B(l) and the subsequent values of B(N).

Press IRkjlukNI once, to accept B(0) = 0, and twice more
to accept the current values of YMIN = -1 and YMAX = 3/2.
The computer will then plot the alternating harmonic
sequence A(N) and the sequence of its partial sums B(N) in a
common graph for N = 1 to 50. Screen 5 shows the completed
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d isp lay.

Y = - l N = 5 0
< + > A < N > = < < - 1 > ^ < N + 1 > > / N
< - > B < N > = B < N - 1 > + A < N >
A < 5 0 > = - . 0 2
B < 5 8 > = . 6 8 3 2 4 7 1 6 1P r e s s l a ^ M O T S H I F o r 5 0 m o r e v a l u e s

» a n g e s c a l e o r t i l e n u

Screen 5. The alternating harmonic sequence A(N)
and the partial sums B(N) of the series 2 A(N)
plotted for N = 1 to 50 in a common graph.

The points (N,A(N)) are shown in Screen 5 with plus
marks (+)> the points (N,B(N)) are shown with small squares
(O). The display strongly suggests that the partial sums
B(N) approach a limit and lie alternately above and below
this limit as N increases. Indeed, averaging B(50) and
B(49) - B(50) - A(50) gives

B(49) + B(50) - B(50) - ^j®-

= .683247161 - Zj~
- .693247161,

which agrees with In 2 = .6931471681, the sum of the
alternating harmonic series, to three decimal places.

Now press |m| to prepare for the next example.
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A. RECURSIVE DEFINITIONS
The sequence B(N) = B(N - 1) + A(N) of partial sums of

the alternating harmonic series in Example 2 was defined by
a formula that calculated B(N) in part from the value of the
term B(N - 1). Definitions that define the Nth term of a
sequence from a formula that involves one or more preceding
terms are called recursive definitions.

The program can accept formulas that define A(N) in
terms of A(N - 1) to A(N - 4). Definitions of B(N) can use
A(N), A(N- 1), ... , A(N- 4) as well as B(N - 1), ... ,
B(N - 4).

Note, however, that definitions of B(N) cannot use
A(N + 1), so that the ratio B(N) = ABS(A(N + 1)/A(N)) gives
nothing. Instead, we use B(N) = ABS(A(N)/A(N -1)).

In the next example we define the Fibonacci sequence by
the formula

A(N) = A(N - 1) + A(N - 2), A(l) = 1, A(2) = 1,

starting with N = 3.

Example 3. The Fibonacci sequence.
Press Ul on the options menu and press 111 when asked

"How many sequences? " Then type in the defining formula
A(N - 1) + A(N - 2)

and press IkkiukNI • After the formula has been accepted,
press I Jl IRETURNI to start the sequence with N = 3. Then
enter

A(l) - 1, A(2) - 1, YMIN - 1, YMAX = 1000

by keying in the numbers one at a time followed by
IRktukNIs. The plot will begin with N = 3, and the points

will rise rapidly after N = 9 and "go off the screen" at
N = 17. The numerical calculations will continue, however,
through N = 52.
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N = 3 T O 5 2Y = 1 0 0 0

+ + - — I 1 I 1 1
Y = l N = 5 2
< + > A < N > = A < H - 1 > + A < N - 2 >
A < 5 2 > = 3 . 2 9 5 1 2 8 0 1 E + 1 0
P r e s s i a * m | f a a i f o r 5 0 m o r e v a l u e s

l a n g e s c a l e o r H e n u

Screen 6. The Fibonacci sequence grows so rapidly
that the terms soon exceed YMAX = 1000.

To conclude the example, press |c| to change scale.
The display will then change to

kCURRENT DISPLAY)I

A(N) = A(N - 1) + A(N - 2)
N - 3 TO 52

YMIN = 1
YMAX = 1000

kCHANGE SCALE) I
YJHN= 1
YMAX = 1000

Screen 7. Changing the vertical scale.
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Press IRETURNI to accept YMIN. Then type 3.3E+10 and
press IRETURNI to enter a value of YMAX that exceeds A(52).
The lines

Use new YMIN and YMAX values to —

||| REPLOT STARTING AT N = 3
||| PLOT STARTING AT N = 53
|M| RETURN TOJfflE OPTIONS MENU

Press |R | o r |P | o r |M| IJ

will appear at the bottom of the screen. Press |R| and
watch the graph develop.

PROBLEMS

Graph the first fifty terms of the sequences in
Problems 1-11. Start with N = 1 unless another starting
value is given, and use the indicated scale for Y.

= ( -1 ) / n (N + 1 ) . - 2 < Yi l
- 1 - (1/N), 0 < Y < 1
= ( ( - 1 ) / \ ( N + 1 ) ) « ( 1 - ( 1 / N ) ) , - 2 < Y < 1
= 1 + ( ( - 1 ) A N ) / N , - 7 < Y < 7
- (2*N + 1)/(1 - 3*N), -3 < Y < 2
■ N*SIN(50/N) , -20 i Y < 50
- ( L 0 G ( N / 2 ) ) / ( N / 2 ) , 0 i T < . 5
= N / s ( l / N ) , 1 < Y < 1 . 5
- (N*N + 20*N + 1)/(2*N*N + 5), 0<T<4
= SQR(4*N + 20)/SQR(N - 1), 1 < Y < 5. Start

with N = 2.
11. A(N) = (1 + (1/N))^ N, 2 i Y i 3. When the first

fifty terms have been plotted, press IRETURNI to see
the next fifty. The convergence is quite slow. To ten
digits, e = 2.718281828.

12. To see a dramatic display of the results of round-off
and truncation error on a computation, investigate what
happens when you try to speed the convergence of the

1. A(N)
2. A(N)
3. A(N)
4. A(N)
5. A(N)
6. A(N)
7. A(N)
8. A(N)
9. A(N)
10. A(N)
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N
sequence in Problem 11 by calculating every 2 th term.
To do this, enter A(N) = (1 + (l/2/sN))/s(2/sN), start
with N = 1, and take 2 <. Y <. 3. The convergence toward
e will look good at first, but the values calculated
for A(N) will behave erratically soon after N = 20.

Problems 13-18 use recursive definitions.

13. Growth rates. A function f(N) grows slower than a
funct ion g(N) as N->« i f l imj^^ f (N) /g(N) =0. I f f
grows slower than g, we also say that g grows faster
than f• The function g(N) = N! grows faster than the
function f(N) = 2 . To see early evidence of this
fact, define the quotient 2W/N! recursively by setting
A(N) = A(N - 1)*2/N with A(0) - 1, and display fifty
terms starting at N - 1. Scale: 0 < Y < 2,

14. Heron9s method for approximating square roots. Heron,
an Alexandrian mathematician who lived sometime between
100 BC and 100 AD, approximated the square root of a
positive number C by calculating successive terms of
the sequence A(N) » .5(A(N - 1) + C/A(N - 1). This is
the same sequence that is generated by applying the
Newton-Raphson method to the function F(X) = X2 - C.
Start with N = 1 and A(0) = 1, and use the value given
for A(50) to estimate
a ) y / 2 b ) / 3 c ) J 9 d ) n / m .
To ten digits, v/I - 1.414213562, y/3 = 1.732050808,
n/M ■ 1.772453851.

15. Rapid approximation of n/2. The sequence
A(N) = A(N - 1) + COS(A(N - 1)) with A(0) = 1
approximates n/2 * 1.57079633 after just a few terms.
Try it. To what value do the terms A(N) appear to
converge if
a) A(0) - 4? b) A(0) = 5? c) A(0) « -1?

16. Fixed points of functions. Under circumstances
described in Chapter K, Picard's Fixed Point Method,
the sequence A(N) = F(A(N - 1)) converges to a solution
of the equation F(X) = X. The convergence depends.
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among other things, upon choosing an appropriate value
for A(0), and, of course, upon whether a solution
exists. The equation COS(X) = X does have a solution.
Approximate it by setting A(N) = COS(A(N - D) with
N = 1, A(0) = 0, 0 < Y < 1.

17. Geometric series. Setting A(N) = A(N - 1)*R,
B(N) - B(N - 1) + A(N), A(0) » 1, and B(0) = 1 and
starting with N = 1 will calculate successive partial
sums B(N) of the geometric series 1 + R + Rr + . # .,
and thereby generate a sequence converging to the
number 1/(1 - R). Find the value given by the program
for B(50) for the following values of R:
a) 1 /2 b) 1 /3 c) 4 /5 d) -1 /10.

18. The series £N " 1 1/(N*(N - 1)) converges to 1.
See page 613 of Thomas and Finney9 s Calculus and
Analytic Geometry. Sixth Edition, (Reading, Mass.:
Addison-Wesley Publishing Company, Inc., 1984). The
progress of the partial sums toward 1 is rapid at
first, but slows down noticeably as N increases. Take
A(N) » 1/(N»(N - 1)), B(N) - B(N - 1) + A(N), B(0) = 0,
and start with N = 1. Watch what happens to B(N) for
the first few hundred values of N.
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R. Taylor Series

1. PURPOSE AND DESCRIPTION
This program enables you to study polynomial

approximations of functions of a single variable. The
polynomials take the form

AN(X - A)N + . . . + Ajd - A) + Aq
with N <. 12. You enter a function Y = F(X), describe a
graphing scale by giving minimum and maximum values for X and
Y, choose the value of the expansion point A, and assign
values to the coefficients A^. You may then graph F(X), plot
any of the partial sums, plot individual terms, and plot the
differences between F(X) and the polynomial's partial sums.
The various graphing options allow you to see the effects of
coefficient changes.

2. STEP BY STEP
Load the program from the disk menu, read the greeting

message, and go on to the input menu shown in Screen 1.

191
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FUNCTION
F(X) = COS(X)

XY-REGION COEFFICIENTS
XMIN = -6 A(0) = 1

A ( l ) = 0
XMAX = 6 A(2) = -.5

A(3) = 0
YMIN = -1.5 A(4) = .041666

A(5) = 0
YMAX = 1.5 A(6) = -1.389E-03

A(7) - 0
EXPANSION POINT A(8) = 2.48E-05

A(9) = 0
A = 0 A(10) - -2.756E-07

A ( l l ) - 0
A(12) = 2.088E-09

IcIhange values |g|o ON IqIutt

Screen 1. The input menu. After F has been
graphed, the list of options shown here will be
expanded automatically to include the option |l|AST
GRAPH. Pressing |£| will then enable you to graph
new polynomials without erasing old ones.
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After reading the input menu, press |G| to plot
F(X) = COS(X) over the interval -6 < X < 6 (Screen 2). Then,
when you are ready, press I RETURN I to display the command
menu, shown in Screen 3.

I 1 I 1 1 1 1 1 —T......
- -

- > l / -
- -

- -
- -
- -
- -

1 1 1 1 1 1 1 1 1

PRESS RETURN TO CONTINUE |~|
- 6 < X < 6 - 1 . 5 < Y < 1 . 5
X U N I T 1 . 2 Y U N I T . 3

Screen 2. The graphics screen, showing the current
function Y = COS(X).
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F(X) - COS(X)

GRAPHING COMMANDS -6 < X < 6
-1. 5 < Y < 1.5

|NP| NEW PLOT (ERASES A = 0
SCREEN FIRST)

IpfI PLOT F(X) N A(N)
|PP| PLOT PARTIAL SUM 0 1
IPTI PLOT TERM 1 0
IPEl PLOT ERROR 2 -.5

3 0
TO ERASE A PLOT 4 .041666
USE III FOR |P| 5 0

6 -1.389E-03
BRANCHING COMMANDS 7 0
_ 8 2.48E-05
Isl SWITCH: GRAPH/MENU 9 0
III INPUT SCREEN 10 -2.756E-07
loj QUIT 11 0

12 2.088E-09
COMMAND? PI

Screen 3 • The command menu. You can enter
coefficients and operate the program from either
this screen or the next.

Operation commands are listed on the left side of the
screen. Pressing the highl ighted letter or let ters wi l l
execute the commands. These commands can all be executed
from the graphics screen as well. In particular, pressing
Isl will exchange displays with a single keystroke. Try it.
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The coefficients of the current approximating polynomial
are listed down the right side of Screen 3. The current
values are the coefficients of the Taylor polynomial

0 iwx , X2 X4 X6 X8 X10 X12
* 1 2 W A 2 ! 4 ! 6 ! 8 ! 1 0 ! 1 2 ! #

This is the 12th degree partial sum of the Taylor series
expansion of F(X) = COS(X) about X = 0. We shall describe
how to enter and change coefficient values later in the
demonstration.

Example 1. Investigating the Taylor polynomial
approximations of F(X) = COS(X) near X = 0.
The function and the coefficients of the approximating

sums from Sq(X) to S12(X) are the ones that appear in the
opening views of the input screen and command menu (Screens 1
and 3).

Press |P| |P|, and when the prompt

PARTIAL SUM THRU TERM? |~|
appears, press |6| IkkjlukNI. The graph of

y 2 y ^ y 6
S6(X)=1-T + 4T-6t

will be added to the screen.
Now press |P| |xl, and when the prompt

TERM NUMBER? |J
appears, press 18.1 IRkjlukNI to add the graph of the term

A(8)X8 = |^
to the display.

To see the effect of adding this term to Sg(X), plot
Sg(X) by pressing |p| |P| and then Ifl I RETURN I.
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To plot the error

Eg(X) = COS(X) - S8(X)

press Ip| |e| , and when the prompt

ERROR THRU TERM? Q

appears, press Ifl IkkiukNI. The graph of Eg(X) will be
added to the screen. The display should now look like the
one in Screen 4.

COMMAND? IJ
-6 <X < 6~
XUNTT 1.2

-1.5 < Y < 1.5
YUNTT .3

Screen 4. The graphs of COS(X), Sg(X),
A(8)X8 - X8/8!, S8(X) - S6(X) + X8/8!, and
E8(X) = OOS(X) - Sg(X).

Any plot can be erased from the screen by replacing the
|P| by 111 in the plot command. To erase Eg(X), for example,
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press |E| |E| and then press |8J I RETURN I when the prompt
ERROR THRU TERM? |~| appears.

Example 2. Entering coefficients to build a new polynomial.
F(X) = SIN(X).
Press III to call up the input screen. Then press |c|,

enter F(X) = SIN(X), and press five I RETURN Is to accept the
current XY-region and expansion point. This will leave the
cursor blinking at the value of A(0).

To construct the Taylor polynomial

y 3 y ^ y * y ^ y l l
* U W A 3 ! 5 ! 7 ! 9 ! 1 1 !

at this point you could enter the coefficients

A(l) =1, A(3) =-1/3!, ..., A(ll) =-1/11!
by keying in their numerical values one at a time along with
zeros for the coefficients of even index. It is quicker,
however, to enter

Ad) = 1,
A(3) = -A(l)/6,
A(5) = -A(3)/20,
A(7) = -A(5)/42,
A(9) = -A(7)/72,
A(ll) = -A(9)/110.

When all the coefficients have been entered, the screen
should show the following values:

A ( 0 ) - 0 A ( 7 ) = - 1 . 9 8 4 1 E - 0 4
A ( l ) - 1 A ( 8 ) = 0
A ( 2 ) = 0 A ( 9 ) = 2 . 7 5 5 7 E - 0 6
A ( 3 ) = - . 1 6 6 6 6 6 6 6 1 A ( 1 0 ) = 0
A ( 4 ) = 0 A ( l l ) = - 2 . 5 0 5 2 E - 0 8
A ( 5 ) = 8 . 3 3 3 3 E - 0 3 A ( 1 2 ) = 0 .
A(6) = 0
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Once a coefficient has been entered, you may define
another coefficient in terms of it in any way you please.
You could have entered A(3) = -.167 and then defined
A(l) = -6*A(3). Or you could have defined A(5) as

A(5) = (A(l) + A(3))/100.

With A(0) = 0, you could even have defined A(l) by the
formula

A(l) = C0S(A(0)).

Press |G| to plot F(X) = SIN(X). Then graph an
assortment of partial sums and the error terms associated
with them. When you have finished, press III to return to
the input screen for the next example.

Example 3. Expanding SIN(X) about X = PI.
The general formula for the Taylor series expansion of a

function F(X) about the point X = A is

F(X) = F(A) + F'(A)(X-A) + E^y*- (X-A)2 + ...

+ <s^a-A)N+...
When F(X) = SIN(X) and A = PI, the first six coefficients are

N F(N)(PI) A(N) = F(N)(PI)/N!

0 SIN(PI) - 0 0
1 COS(PI) =-1 -1
2 -SIN(PI) = 0 0
3 -COS(PI) = 1 1/3!
4 SIN(PI) - 0 0
5 COS(PI) = -1 -1/5!

The Taylor polynomial S-(X) is therefore

S5(X) = -(X - PI) + ~-(X - PI)3 - jp(X - PI)5.
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Press |C| on the input screen, followed by five
IRETURNI s to accept F(X) = SIN(X) and the current XY-region.
Then press IFI III IrETORNI to enter A = PI as the new
expansion point.

Next, enter the coefficients of S*(X). When you have
finished, the coefficient column should display zeros except
f o r

A(l) =-1, A(3) = .166666661, A(5) =-8.3333E-03.

Press Igl to graph F(X) = SIN(X). Then press |p| |p|
and 111 IrETURNL IFI |F| and III I RETURN L and |F| IFI and
|5| IRETURNI, in turn, to add the graphs of S^X), fyX), and
S^(X) to the display.

Now press III and enter the coefficients

A ( 7 ) = - A ( 5 ) / 4 2 , A ( 9 ) = - A ( 7 ) / 7 2 , A ( l l ) = - A ( 9 ) / 11 0 .

After checking your entries, press IlI to recall the graphics
display. Then press l?l IFI 111 111 I RETURN I to add the
graph of the partial sum &q(X) to the display. The final
picture should be the one in Screen 5.

To get a closer view of the partial sum approximation
near A = PI, press III and enter

XMIN = 0 XMAX = 3 YMIN = -2 YMAX = 2

Then replot F and the partial sums S-, S3, and S*.

3. OTHER FEATURES
After investigating one approximating polynomial, you

may wish to experiment with another while keeping your
earlier graphs. To do so, enter the new polynomial's
coefficients on the input menu, press Il| for last graph,
and add the new graph for comparison.
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COMMAND? |J
-6 < X < 6
XUNIT 1.2

-1.5 < Y < 1.5
YUNTT .3

Screen 5. The graph of SIN(X) and the partial
sums S1(X), S3(X), S5(X), and Sn(X) of its Taylor
series expansion about the point A = PI.

PROBLEMS
1 . T h e s e r i e s

_2 X« Xl°__x"A ~ 3 ! 5 ! 7 !

converges to SIN(X^) for all X. The convergence is
especially rapid on the interval -1 <. X <. 1. Graph
F(X) = SIN(X2) and the partial sums for N = 2, 6, and
10 in a common graph for -1 <. X <, 1, -2 ^Y < 2.
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2. The coefficients A(N) of the geometric series

1 + X + X2 + X3 + ... + XN + ...
are all equal to 1. Investigate the convergence of the
series to the function F(X) = 1/(1 - X) by plotting
F(X) together with the partial sums for N = 0, 1, 10,
11, and 12 over the interval -2 <X< 1. Use -5 < Y <
10.

3. The Taylor series expansion of the natural logarithm of
X about A = 1 is

LOG(X) = (X - l ) - ^= j ^ - + £~ - - . . .

♦ < . „ • « * « * +

The series converges for 0 < X £ 2. Enter
F(X) = LOG(X) and take .1 £ X £ 4, -4 £ Y £ 4, A = 1,
and A(N) = (-D^/N for N = 1, 2, ..., 12. Graph the
partial sums for N = 1, 2, 3, 9, and 12. Note their
erratic behavior for X > 2.

4. The Taylor series expansion of ATN(X) about X = 0
begins

y 3 y 5 Y ' y 9 y l l
ATN(X)=x-xr + xr-£- + xr-xrr +...

The series converges for -1 £X £ 1. To investigate
the convergence of the partial sums to AIN(X), enter
the function and graph it for -3 £ X £ 3, -3 £ Y £ 3.
Then enter A(0) = 0, A(l) = 1, A(2) = 0, A(3) = -1/3,
and so on up to A(ll) = -1/11 and A(12) =0, and graph
the partial sums for N = 1, 2, 5, and 11. Plot the
error of each partial sum.

5 . The fo rmu la
X 3 2 X 5TAN(X) = X + J- + 4~
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gives a close approximation for -1 £X £ 1. Graph the
function TAN(X), the polynomial, and the error in the
approximation
a) for -1.5 < X < 1.5, -10 < Y < 10
b) for -1 < X < 1, -1.5 < Y < 1.5

6. The values of vl + X4 are sometimes calculated from
the approximation

s/ 4 X 4 X 8i+x4^i+2L-J-.
Graph the function and the polynomial together for
-1 £ X £ 1. Try to improve the approximation by adding
a multiple of X12 to the polynomial. [Hint: Plot
the error in the approximation Sg(X) and try to cancel
it with a multiple of X12.]

7. Try to make a good polynomial approximation of
F(X) = SEC(X) for -1 £ X £ 1. Work initially with
-1.5 < X < 1.5 and -1 < Y < 4. Take A(0) = 1 and use
only even powers of X. [The general rule is: To
approximate an even function, use even powers of X or
(X - A); to approximate an odd function, use odd powers
of X or (X - A).]



5. Complex Number
Calculator

1. PURPOSE AND DESCRIPTION
This program calculates sums, differences, products,

quotients, and powers of complex numbers entered in either
polar or rectangular form and shows the resulting Argand
diagrams. The program also calculates the polar and
rectangular forms quickly from one another.

2. STEP BY STEP
After loading the program, read the greeting message and

continue on to the ncalculation padn shown in Screen 1.
The pad has five rows, a row for each of the numbers in

the equation
A 1<0PERATI0N>I B = C

and two additional rows, labeled S and T, for storing
r e s u l t s .

203
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REAL IMAGINARY MODULUS ARGUMENT

A 0 0 0 0
HI
B 0 0 0 0

C 0 0 0 0

S 0 0 0 0

T 0 0 0 0

CHANGE ENTRY: HI IoIperation |b| Isl Ifl IcIlear
iMlODE: RECTANGULAR |g|RAPH IqIuTT IJ

Screen 1. The calculation pad.

Example 1. Calculation with
A = 3 + 4i, B = - 5- i.

Enter A = 3 + 4i into the calculation pad by pressing
|A| IJI I RETURN I |£| IRETURNI • After the second return, the
computer will calculate and display the modulus and argument
of A, which are 5 and .927295 respectively, and the cursor
will move to the operation display. Press I RETURN I to accept
the default operation, addition. Then press PI III I RETURN I
PI 111 IRETURNI to enter B = -5 - i. The computer will
complete the B row by displaying the modulus and argument of
B = -5 - i, and will then calculate and display the
rectangular and polar coordinates of the sum A + B = C. The
pad's first three rows should now look like this:
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REAL IMAGINARY
A 3 4

l±l
B - 5 - 1

C - 2 3

MODULUS ARGUMENT
5 . 9 2 7 2 9 5

5.09902 3.33899

3.60555 2.15880

Press IgI to construct the Argand diagram for

(3 + i) + (-5 - i) =-2 + 3i,
shown in Screen 2.

A , B , A + B S C A L E : 5
PRESS RETURN TO CONTINUE l~|

Screen 2. The Argand diagram for A + B = C with
A = 3 + 4i and B = -5 - i. The scale is determined
by the coordinate of largest absolute value in the
rectangular representations of A, B, and C.

After viewing the Argand diagram, press IRETURNI to
continue the example.

Move the results of the addition into row S by pressing
Isl and then, after a pause, Icl. Notice the change in
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instructions at the bottom of the screen: Immediately
after you press |s| the bottom line will change to

IreturnI accept mlry IescLabort entry
use entry in: IaI |b| Icl Isl |t| IzIero.

The options shown here enable you to enter the contents of
any row into row S by pressing the letter of that row. The
options even allow you to keep S as it is by pressing |s|
itself (useful if you happen to have pressed |S| by mistake
and have no desire to change the row), or to enter zeros by
pressing |z| (useful for clearing a row)•

After pressing |s| and |C| to duplicate row C in row S,
the cursor will move to the first entry in row T. Press
lESCl to exit from the T row.

Now press lol (noh,n not zero), IJ, and I ESC I to
calculate

A/B = (3 + 4i)/(-5 - i) = -.730769 - .653846 i.

Press IGI to see the Argand diagram of the quotient, and,
when ready, press I RETURN I to begin the next example.

Example 2. Calculations with
A = 2e* and B = 3e3i.

Press |c| to clear the calculation pad. The entries
will then be all zeros. Press |M| to change from rectangular
to polar mode. Then press |A| |2| I RETURN I 111 I RETURN I to
enter A = 2e*. Press IH to request multiplication, and
press IJI IRETURNI IJI IkkjlukNI to enter B = 3e3i. Row C
will then display the product of A and B in both rectangular
and polar form. To five decimal places,

2e* * 3e3i = -3.92186 - 4.54081 i = 6e4i.
Press |G| for the Argand diagram, shown in Screen 3.

Notice how the scale in this case is determined by the
magnitude of the i-component of the rectangular form of the
product. When you return to the calculation pad, you will
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see that once again the scale has been determined by the
coordinate of the largest magnitude in the rectangular
representations of A, B, and C.

A , B , A * B S C A L E : 4 . 5 4 0 8 1
PRESS RETURN TO CONTINUE PI

Screen 3. Argand diagram for 2ei * 3e3i = 6e4i.

Press IRkiukNI to return to the calculation pad.
Other algebraic combinations of A and B are calculated

by pressing |o| ^OPERATION SYMBOL)I lESCl. To calculate
B - A, B/A, and BA, however, you must first reverse the
present order of A and B by interchanging the contents of the
A and B registers. To do this you can move A to S (for
temporary storage), B to A, and S to B.

3. SPECIAL INPUTS
The numbers n and e can be entered in numerical and

functional expressions as PI and E. Press |p| III for n, and
Ie| for e.
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P R O B L E M S ,
In Problems 1-8, calculate A + B, A - B, A*A, A*B, B*B, 1/A,
1/B, A/B, B/A, AB, A"B, B*, and B~A. (Toolkit notation for
AB is A^B.)

1. A = 2 + 3i, B - 4 - 2i
2 . A - 2 - i, B = -2 + 3i
3. A = -1 - 2i, B - .5
4. A = 1 + i, B = l-i
5. A = 5, B = 3 - 4i
6. A - 2e*, B = 3e3*
7. A - eni, B - -1
8. A - i, B = i

9. Calculate (1 + i )*1+i ' a lgebraical ly. Then check your
result with COMPLEX NUMBER CALCULATOR.



7. 3D Grapher

1. PURPOSE
This program graphs surfaces defined by equations of the

form
z = f(x,y)

for (x,y) in a rectangular domain.

2. DESCRIPTION
3D GRAPHER produces 2-dimensional images of surfaces

defined in a 3-dimensional rectangular coordinate system.
The screen shows an image of the surface projected by rays
from a viewing point P through the surface S to a plane
behind it, as in Figure 1.

The spherical coordinates of the viewing point determine
the perspective. The distance D of the image plane from the
viewing point is also controllable. Together, the choice of
spherical coordinates and the value of D determine the image
size. You enter F(X,Y), the maximum and minimum X and Y

209
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Plane

Image shown on
computer screen

Figure 1. The projection of a surface S onto an
image plane located D units away, and opposite the
origin, from the viewing point P.

values, spherical coordinates for the viewing point, the
value of D, and the number of X values and Y values to plot.

The surface may be represented by plane sections
parallel to the yz-plane, by plane sections parallel to the
xz-plane, by both together, or by a collection of unconnected
points on the surface. Thus, the surface is presented as a
thin, transparent shell that may, at your option, be made
visible by hatching, crosshatching, or dotting. Figures 2-5
i l lus t ra te the d i f ferent opt ions.



T. 3D GRAPHER 211

Figure 2. The surface z = (x - l)(y - 1) sketched
o v e r t h e r e c t a n g l e 0 £ x £ l , 0 £ y £ l b y l i n e s
parallel to the yz-plane.

Figure 3. The surface z = (x - l)(y - 1) sketched
o v e r t h e r e c t a n g l e 0 £ x £ l , 0 £ y £ l b y l i n e s
parallel to the xz-plane.
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Figure 4. The surface z = (x - l)(y - 1) sketched
o v e r t h e r e c t a n g l e 0 £ x £ l , 0 £ y £ l b y
crosshatching.

Figure 5. The surface z = (x - l)(y - 1) over the
r e c t a n g l e 0 £ x £ l , 0 £ y £ l , r e v e a l e d b y
dot t ing .
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The point P is located by its spherical coordinates
(p,©,0), as shown in Figure 6. The image plane is
located opposite the origin from P, and at distance D from P.
In order to have this relationship, D must be greater than p.
In addition, the variable 0 is required to satisfy
0 < 0 < n to avoid potentially confusing interpretations.

▶ y

Figure 6. The spherical coordinates of the viewing
point P.

The point P may also be regarded as the location of an
observer's eye. When the location of P is changed, the
viewer sees S from a new perspective, and the size of the
image may change. In particular, a decrease in the value of
p produces an increase in image size and some distortion as
well. In fact, if p is decreased enough so that P moves in
too close to S or even crosses it, the image may become
unrecognizable, or it may be lost altogether.

Thus, while at times it may be desirable to view the
surface from up close, it is often better to reduce
distortion by using values of p that are relatively large
compared with the values of x, y, and z for points in S.
However, increasing p decreases the image size, so the image
plane must be moved away by increasing D to maintain good
presentat ion.
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The size of the image is determined by the ratio D/p and
the ranges of values assumed by the variables x, y, and z.
Some experimenting will be necessary to develop a sense of
how to choose values of D and p to achieve images of desired
size. For some rough guidance, we note that the choice
D/p = 60 produces a good image of the surface in Example 2,
Screen 4, in which the values of x, y, and z are all in the
interval from 0 to 1, with each attaining a maximum of 1.
The value 40 is reasonable for Example 3, Screen 6, in which
x and y vary from 0 to 2 and z varies from -1 to 1.

The variables 0 and 0 are also important in
obtaining good images. Features of a surface hidden from one
viewpoint may be revealed clearly from another. It is often
necessary to try several angles before obtaining a clear
picture of a surface. The graphing subroutine in 3D GRAPHER
is written in machine language to produce graphs quickly and
to enable you to experiment without spending a lot of time.

The final parameters that affect the display are the
number of x- and y-curves for hatching or crosshatching. If
the image size is small, these numbers should be
correspondingly small. These two numbers also determine the
number of dots plotted when the surface is made visible by
dots rather than hatching. In this case, the number of dots
should usually be taken large for good presentation. In
using these numbers, the count starts from 0 instead of 1 so
there will be one more curve in each direction than the
number specified.

3* STEP BY STEP
Load the program from the disk menu, read the greeting

messages, and continue on to the program menu, shown in
Screen 1.
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PROGRAM MENU
III .. PROBLEM DISPLAY

... OR PLOT SURFACE USING
111 .. X-CURVES
lYl .. Y-CURVES
111 .. BOTH X-CURVES AND Y-CURVES
iDl .. DOT MODE

... OR EXIT USING
iQl .. QUIT

PRESS LETTER OF YOUR CHOICE

Screen 1. The program menu.

EQUATION AND ENDPOINTS

F ( X , Y ) = X * X - Y * Y
X M I N - - 1 X M A X = 1
Y M I N = - 1 Y M A X - 1

VIEWING PARAMETERS
RHO = 15
PHI = 1.2

THETA = 1
DIST. - 800

NUMBER OF X,Y VALUES FOR PLOTTING
N = 1 0 M = 1 0

IcIhange entry IgIo on IqIuit |~|

Screen 2. The problem menu with entries from Example 1.

Example 1. Graph the surface
z = x2 - y2

for -1 i x £ 1, -1 < y £ 1, using p = 15, 0 - 1, 0 - 1.2,
D = 800. Use n *» 10 x-curves and m = 10 y-curves.
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Solution. Starting from the program menu (Screen 1), press
|P| to see how the surface equation and plotting parameters
for this example have been entered into the problem menu
(Screen 2) •

Note the computer variable names assigned to the

viewing_parameters: RHO, THETA, PHI, DIST. (for D), etc.
Press Ig| to accept all entries.

You are now back at the program menu. Press Ib| for
the graph. The computer will draw the x-curves first, then
the y-curves, to give the display in Screen 3.

Screen 3. The hyperbolic paraboloid z = x2 - y2
graphed over the square lx I £ 1, |y| £ 1.

Press IRkiukNI to return to the program menu, which now
has the option

|L| .. LAST SURFACE DISPLAYED.

Pressing |L| at this point will recall the plot shown in
Screen 3. Try i t .

Press IrEIURNI to continue, then press |xl to see the
paraboloid represented by x-curves only. Then press
IkkiukNI and IyI to see it drawn with y^curves only.
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Example 2. Graph the surface
z = (x - l)(y- 1)

for 0 £ x £ 1, 0 £ y £ 1. Use p = 15, O = .4, 0 = 1,
D = 1000, and N = M = 8. Also, plot the surface using the
dot mode, with 20 dots in each direction.

Solution. From the program menu, press |P| then Icl to
enter the formula

F(X,Y) = (X - 1) • (Y - 1)

and the new parameter values. Then press Ig| and |B| to
obtain the graph shown in Screen 4.

Screen 4. The surface z = (x - l)(y - 1),
crosshatched over the unit square 0 £ x £ 1,
0 £ y £ 1 .

Now return to the program menu, press |P|, then |c|,
and enter M = N = 20. Then press |G| and |d| for a dotted
graph (Screen 5).
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Screen 5. A dot-mode graph of the same surface.

Example 3. Graph the surface of Example 2 over the extended
domain 0 £ x £ 2, 0 £ y £ 2. Use p = 40, 0 = -1,
0 = .9, D = 1600, and N = M = 8.

Screen 6. The graph of z = (x - l)(y - 1), over
the rectangle 0£x£2, 0£y£2 shows a saddle.
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Solution. From the program menu press |p|, then press Icl
and make the necessary entries. Then press Ig| and |B|
for the graph, shown in Screen 6.

Examples 2 and 3 illustrate that some care must be
taken to ensure an accurate representation. In Example 3 an
extension of the plotting domain revealed a "saddle" that
was not visible in Screen 5. In some cases, algebraic
properties of the formula for a surface may give an
indication of where to explore. For instance, the factors
x - 1 and y - 1 in z = (x - l)(y - 1) indicate that the
surface may have interesting features near the point (1,1).
It is also easy to observe that along the line y = x we have
y - l = x - l , s o t h e f o r m u l a f o r z a l o n g t h i s l i n e r e d u c e s
to (x - 1) . This simple observation shows that the surface
has a parabolic character not apparent in the original
graph, and hence that further exploration is warranted.

Example 4. Graph the surface
z = 1 - x2/4 - y2

for -2 £ x £ 2, -1 £ y £ 1. Use p = 20, 0 = .7, 0 = .8,
D = 700, and N = M = 6.
Solution. Press |p| on the program menu and enter the
surface equation

F ( X , Y ) = 1 - . 2 5 * X * X - Y « Y
and the appropriate parameter values. Then press |G| and
|B| for the graph. The result, shown in Screen 7, is an
image of an elliptic paraboloid opening downward from its
ve r tex , (0 ,0 ,1 ) .

The x- and y-curves shown in Screen 7 are easily
identified as parabolas. For example, by setting x = c, a
constant, we find the relation z = (1 - c /4) - y2, which is
the equation of a parabola in y and z. And, while they are
not shown explicitly in the display, we note that the z-
curves are ellipses of the form x IA + y2 = const.
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Screen 7. The elliptic paraboloid z = x /4 - y2
over the rectangle -2 £ x £ 2, -1 £ y £ 1.

Thus, the computer display, coupled with seme thought about
the algebraic properties of the surface equation, should
give a good idea of what the surface really looks like.

4. OVERCOMING OCCASIONAL DIFFICULTIES
The subroutine for masking portions of the surface that

are hidden from view by other areas of the surface may not
screen the "hidden lines" properly, especially when graphing
the y-curves. This difficulty usually can be circumvented
by changing the perspective on the surface.

There is also a sporadic failure of the curves in one
direction to connect properly to the final curve in the
other direction to complete the crosshatching of a surface.
This can usually be handled by changing the number of curves
taken for the crosshatching (e.g., use 7 or 8 instead of 6,
or vice versa, for the number of x-curves and/or y-curves).

See Problem 13 for an instructive example.
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5. IescI
After pressing |c| to make changes in the problem menu

(Screen 3), you can exit from change mode at any time by
pressing IESCI.

This can save time if you want to change a single entry
early in the list. Press Icl, key in the new entry, press
IRETURNI, and press lESCl. The cursor will return directly
to the bottom of the screen once I ESC I is pressed.

PROBLEMS

Graph the following surfaces, using the given parameter
values. Compare your results with the pictures shown here.

1. z = x2 - y j -1 £x £ 1,
-1 £ y £ 1, p = 30,
O = 1.2, 0 = 1.3,
D = 1000, n = 8, m = 8.

2. z = x* - xy; -1 £ x £ 1,
- i £ y £ 1 * P = 2 5 ,
0 = .5, 0 = 1.3,
D = 1000, n = 9, m = 9.
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6.

z = (x - y)/(l +x2)j
-2 £ x £ 2, -2 £ y < 2,
p = 20, O = .7,
0 = .8, D = 650,
n = 10, m = 10.

z = l - y 2 > 0 £ x £ 2 ,
-1 < 7<1» P =25,
0 - .75, 0 - 1.2,
D = 1200, n = 8, m = 8.

z = 1 - lx - ylj 0 £x£ 1,
0 <y£ 1, P - 25, 0 - .3,
0 = 1.2, D = 1500,
n = 8, m = 8.

z = 1 - 7x2 + J^J
-1 £ x £ 1, -1 £ y £ 1,
p = 20, O = 1.2,
0 = 1.2, D = 1000, n = 20,
m = 20» use dot mode.
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7.

8.

z = v/x + y$ 0 £ x £ 4,
0 £ y £ 4, p - 50,
© = -.5, 0 = 1.1,
D = 1200, n = 5, m = 5.

z = 1/(1 + x2 + y2)-,
-4 £ x £ 4, -4 £ y < 4,
p = 50, © » -.5,
0 = 1.2, D - 1000,
n = 10, m = 10.

9. z = cos(x2 + y2)*
-2.5 £x £2.5,
-2.5 £y£ 2.5,
p = 40, © = .8, 0 = .8,
D = 1000, n = 15, m = 15.

10. z = lx - y|j 0 £x £ 5,
0 £y£ 5, p = 50, © - 1.2,
0 = .6, D = 800, n = 10,
m = 6.
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1 1 . i = e " ( x ^ j 0 < i < 2 ,
0 £y£2, p = 15, ©=-.8,
0 - 1.2, D = 800,
n = 8, m = 8.

12. z = e"(x "*y *i -2 £x £2,
-2 £y£2, p - 30, 0 = 1,
0 = 1.2, D = 1500, n = 10,
m = 8.

13. To appreciate the improvement that can sometimes be
achieved by changing the settings in the problem menu,
try graphing z = sin (xy) with each of the following
choices of settings:

a) -4 £ x £ 4, -4 £ y £ 4, p = 15,
0 = 1,0 = 1.2, D = 800, n = m = 10

b) -4 £ x £ 4, -4 £ y £ 4, p = 20,
© = 1, 0 = .8, D = 600, n = m = 24

c) -« £ x £ 6, -6 £ y £ 6, p = 40,
O = 1, 0 = .8, D = 600, n = m = 24



U. Double Integral
Evaluator

1. DESCRIPTION
This program evaluates integrals of the form

i ( x )
Ja ,/g(x) ,y)dydx

g< "

by an iterated trapezoidal rule, an iterated Simpson's rule,
and an iterated Romberg method, and enables you to compare the
three results. You key in formulas for f, g, and h, values
for a and b, the number of x- and y- sub intervals for the
trapezoidal and Simpson rules, and an error tolerance for the
Romberg integration.

2. HIE NUMERICAL METHODS
The iterated trapezoidal rule, iterated Simpson's rule,

and iterated Romberg integration are straightforward
extensions of the methods used in the program INTEGRAL
EVALUATOR described in Chapter M.

Under the iterated trapezoidal rule, the x-interval from
a to b is first partitioned into n sub intervals of equal
length. The length of each sub interval is h = (b - a)/n, and
the partition points are given by

Xj = a + ih, i = 0, 1, . . . , n.
Then for each i the y-interval from g(x.) to h(xj) is

225
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partitioned into m subintervals, each of length

k£ = (h(Xi) - g(xi))/m,
to obtain a "rectangular" grid on the region of integration,
as shown in Fig. 1.

<x8' y84>

y = g(x)

a - x 0 X j x 2 x 3 x 4 x 5 x 6 x 7 x g - b

Figure 1. A sample partition of the region in the
xy-plane bounded by the curves y = g(x), y = h(x),
and the lines x = a, x = b, with n = 8, m = 6.

Denote the grid points by

(x i 'y i j * ; i = 0, 1 , . . . , n , j = 0, 1 , . . . , m,
and let

z . j = f te^yy ) ; i - 0 , 1 , . . . , n , j = 0 , 1 , . . . , m .
Then for each i form the trapezoidal sum

Xi " T (2i0 + 2zil + 2zi2 + 2zi,m-l + «ta>'
so that 1^ is the mth trapezoidal approximation to the inner
in teg ra l
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rh(x,)

The resulting approximation of the double integral is

T n m = 2 ( I 0 + 2 I l + 2 I 2 + - + 2 I n - l + I n ) -
For the iterated Simpson's rule, n and m must be even

positive integers. The symbols h, x^, y^,, z^j, k^ have the
same meaning that they do in the iterated trapezoidal rule.
For each i from 0 to n form the sum

I i = T ( z i O + 4 z i l + 2 z i 2 + 4 z i 3 + —
+ 2zi,m-2 + 4zi,m-l + "ta* '

so that I. is the mth Simpson approximation to the inner
integral

The resulting approximation of the double integral is

Snm - K + 4I1 + 2I2 + 4I3 + - + 2In-2 + 4In-l + V'
Under the iterated Romberg method, the integration in

each direction is carried out according to the Romberg scheme
for single integrals. Thus, at the first stage the Romberg
approximations

r h ( a ) r h ( b )
Xa * J , f<*,y)dy **d h * J /^ '^J g ( a ) u J g ( b )

are used to form the first trapezoidal approximation in the
x-direction,

This value is the first Romberg approximation to the double
integral:

R0=Tl -
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At the next stage, the interval a to b is divided in
half, and the Romberg approximation to the inner integral is
computed at the midpoint c = (a + b)/2:

Mo) t
Jg(c)Jc - J , f(c,y)dyc

The trapezoidal approximation

T 2 = ^ ( I a + 2 I c + V
is then used to obtain the next Romberg approximation to the
double integral:

Rl = <4T2 - Tx)/3.

The procedure is continued in the following way. At the
ith stage the number of x-sub intervals is again doubled,
Romberg approximations are formed at each partition point, a
trapezoidal approximation is formed, a row of extrapolations
is carried out as described in Chapter M, and the final value
is used as the ith Romberg approximation of the double
integral. After computing a minimum of i = 3 rows, the
procedure is halted when

'Ri = Ri-l' < 8'Ri''
or when 7 rows are computed, whichever occurs first. The
value 7 was chosen to preclude excessive run times) of
course, this means that in some problems we may not get the
accuracy we want.

3. STEP BY STEP
Load the program from the disk menu, read the greeting

message, and continue on to the program menu, shown in
Screen 1. Then work through the following examples.
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PROGRAM HENU

III .. TRAPEZOIDAL RULE
111 .. SIMPSON'S RULE
111 .. ROMBERG INTEGRATION
111 .. OBIT

PRESS LETTER OF YOUR CHOICE |_l

Screen 1. The program menu.

Example 1. Evaluate
r l - *

(x2 + y^dydx
0 '1-x

by the three methods described above, and compare results.
Use n = 10, m = 10 for both the trapezoidal and Simpson's
rules. Let 6 = .00001 for the Romberg integration.
Solution. Press It| on the program menu to call up the
problem display for the trapezoidal rule, shown in Screen 2.

Since the default problem in the program is correct for
this example, press |G| to integrate. The trapezoidal
approximations of the inner integrals at the eleven
partition points are displayed as they are computed. You
can halt the action by pressing I RETURN I, and continue it
with another I RETURN I. The final trapezoidal approximation
to the double integral, T1Q 1Q, is shown as T = 1.6767.

The exact value of the integral is 5/3. Thus, T is
accurate to only 2 places.

As noted above, the values 10 to 110 displayed on the
left side of the screen are approximations of the inner
integrals. For example, one of the values is I* = 1.335,
which approximates the value 2(1/2) + 8(l/2)3/3 = 4/3 of the
y-integral 2x + 8x /3 at the partition point x* = 1/2.
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TRAPEZOIDAL RULE INTEGRAND AND LIMITS
F ( X , Y ) = X * X + Y * Y

G(X) = 1 - X
H(X) = 1 + X

A = 0 B = 1

NUMBER OF X-STEPS NUMBER OF Y-S1EPS
N = 1 0 M = 1 0

IcIhange entry IgIo on ImIenu IqIutt CI
Screen 2. Problem display for the trapezoidal
rule in Example 1.

Press IRETURNI to return to the program menu
(Screen 1), which now contains the option

III .. HARD COPY OF LAST RESULTS.

If your computer is connected to a printer and you know the
slot number of the interface card, you may obtain a copy of
the values just calculated by pressing |g|, then the slot
number, then IRETURNI to confirm your choice.

To continue the demonstration, press |S| from the
program menu for Simpson's rule. The problem display will
be nearly the same as the one in Screen 2. The input data
should still be correct, so press |G| for the integration.
The approximation Sjq jq is shown as S = 1.66666667. Press
IkkiukNI to continue; the final trapezoidal result is
recalled and displayed for comparison.

Press IRkjlukNI to return to the program menu, and press
|R| for Romberg integration. This time the problem display
shows the error tolerance in place of the number of
subintervals. Press IkkiukNI then |G| for the integration.
The value R = 1.66666661 is returned after computation of
the minimum three extrapolation rows.

Press IRETURNI to display the results of all three
computations (Screen 3).
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F(X,Y) = X * X + I * Y

G(X) = 1 - X
H(X) - 1 + X

A = 0 B =« 1
RO = 2.33333333 WITH N = 10
RL = 1.66666667 M - 10
R2 = 1.66666661

T = 1.6767
R - 1.66666661

WITH N = 10
M= 10

S = 1.66666661
PRESS ANY KEY TO CONTINUE |J

Screen 3. The results of the three methods shown together.

The accuracy of the Simpson and Romberg approximations
can be traced to the fact that the functions involved in the
integrations in both directions are polynomials of degree no
more than three. In fact, the correct eight-place value of
the integral is returned by Simpson's rule even with n = 2
and m = 2.

Example 2. Evaluate

f f ( x 2 y - x y ^ d y d xJ0 J0

by all three methods, using n = 20, m = 20 for the
trapezoidal and Simpson's rules, and 6 = .00001 for the
Romberg integration.
Solution. From the program menu press ITI for the
trapezoidal rule, then |c| to enter change mode. Enter
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F(X,Y) = X * Y ♦ (X - Y)
G(X) = 0
H(X) = X

A = 0 B = 2
N = 2 0 M = 2 0

Then press Ig| for the integration.
The values for the inner integrals appear more slowly

than they did in Example 1 because M and N are larger. The
final result is T20 2Q = 1.06843223.

As in Example 1, the exact value of the integral can be
found by direct integration to be 16/15 = 1.066666. Thus,
the trapezoidal rule yields only 2-place accuracy in this
example.

Press IRETURNI to return to the program menu. Call up
Simpson's rule, press Icl, and change N and M to 20. Then
press |g| for the integrat ion. The final result is
S20 20 = 1*06667111, which is accurate to 5 places.

Now return to the main menu, and press Ir| and then |g|
for the Romberg integration. The final result,
R = 1.06666667, is reached at R2.

In this example the Romberg integration appears to be
the best choice. Simpson's rule does not return the exact
value of the integral since a term involving x4 appears in
the second integration. However, the Simpson result can be
improved substantially. Since the integrand for the inner
integration is quadratic in y, Simpson's rule is exact for
each integral, even with m = 2, so accuracy can be improved
with little cost of computing time. For example, with
n = 120 and m = 2, the number of evaluations of f(x,y)
required is 121 x 3 = 363, which is less than the 212 = 441
required with n = m = 20. Try it: Return to the
Simpson's rule menu, enter the new values of N and M, and
carry out the integration. The values of the inner
integrals appear quickly, and the final result is
^20 2 = .06666666 •
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Example 3. Evaluate
rn/2 /-n/2-x,
| ( 1 - s i n ( x + y ) ) d y d xJ 0 J 0

using n = 20, m - 20 for the trapezoidal and Simpson's
rules, and e = 10~° for the Romberg integration.
Solution. From the program menu press |t| and enter

F(X,Y) = 1 - STN(X + Y)
G(X) - 0
H(X) - PI/2 - X

A - 0 B = P I / 2
N = 2 0 M = 2 0

Press |G| for the integrat ion. The final result is

T20,20 - -234452829.
When the integral is evaluated directly its value is

found to be n2/8 - 1, which is .23370055 to 8 places. Thus,
the trapezoidal is accurate to 3 places.

Simpson's rule yields S20 20 = •23700276, accurate to 5
places, and the Romberg approximation is R = .233702347,
also accurate to 5 places.

Example 4. Evaluate
raretan 0£ I s i n r O d r d O

0 J0

using n = 20, m = 20 for the trapezoidal and Simpson's
rules, and e = .00001 for the Romberg integration.
Solution. Since changing the names of the variables of
integration does not affect the value of the integral, the
integral is also given by

r l ra rc tanx
sinxy dydx.0 J0



2 3 4 U . D O U B L E I N T E G R A L E V A L U A T O R

From the program menu press lx| and enter

F(X,Y) = SIN(X * Y)
G(X) = 0
H(X) = AIN(X)

A = 0 B = 1
N = 2 0 M = 2 0

Then press |g| for the integration. The final result for
the trapezoidal rule is T2q 2q = .0868238427.

In this case a good approximation to the exact value of
the integral can be found by first carrying out the inner
integration to obtain

r a r e t a n x «
J^ s in xy dy = [ - ( cos xy ) / x ] * r c tan x

= (1 - cos(x arctanx))/x,

then using the program described in Chapter M to obtain
r1(1 - cos(x arctanx)/xdx = .086701167,
J0

accurate to 9 places. Thus we can see that the trapezoidal
rule yields 3-place accuracy in this example.

Now complete the example by carrying out the Simpson
and Romberg integrations. The values returned for the
integral should be !S^0 20 = .0867010025, and
R = .0867011618, the latter obtained as R4«

4. CONCLUSIONS
The examples above tend to confirm our previous

experience that Simpson's rule appears to be more accurate
than the trapezoidal rule for many elementary functions.
The reason is that trapezoidal errors are of the order of
the square of the step size, as compared with the fourth
power for Simpson's rule. The Romberg method errors are
also of the order of the fourth power of the step size, but
some accuracy is lost in the program's implementation in the
trade-off for speed.
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As we saw in Example 2, it may be possible to improve
the results of the trapezoidal rule and Simpson's rule by a
judicious choice of the number of subintervals. In this
connection, success requires a little thought about the
nature of the integrand, the integrations involved, and the
properties of the numerical methods.

Checking the value found for a double integral against
an "answer book" usually shows only whether an error has
been made in the calculation, giving little idea as to the
location of any error. When an error is detected this way,
the only alternatives are often to re check all calculations
or to redo the entire problem. DOUBLE INTEGRAL enables you
to examine the values of the y^-integrals Ij. A spot check
of these results for one or two values of i may give a quick
indication of where the error occurred, and may sometimes
even suggest the correct result.

PROBLEMS
1. Approximate the integral in Example 3 with n = m = 40.
Simpson's rule now gives better results than R, primarily
because of the programming choice to limit the Romberg
computation to seven extrapolation rows. (To ten places,
7^/8 - 1 = .2337005501.)

2. Evaluate the integral of Example 4 by Simpson's rule
(a) with n = m = 30, (b) with n = m = 40. To how many
decimal places is the answer accurate in each case? (To
nine places, the value of the integral is .086701167.)

Approximate the integrals in Problems 3-16. Try all three
numerical methods. Experiment with n, m, and e to develop a
feeling for the accuracy of each approximation.

f 1 f13. J J (x + y)dydx; try n = m = 1 for the

trapezoidal rule, n = m = 2 for Simpson's rule.
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r1 r14. I I (x + y)dydx; try n = 50, m = 1 for
J0 Jx
the trapezoidal rule.

5. J J (2x + y)dydx; try n = 2, m = 2

Simpson's rule.

6. P f (4 - x - 27)dydxJ0 J0

7.
ji j^xydydx

8. J J^(xy + y^dydx

9. J^xV*** rn/4 (4 cos 2©1 0 . r d r d ©
J 0 J 0

11. f2 fy+l (x + y)dxdyJ0 J0 12. J* f e-<-*>dydx

13. f1 fx/2| 1 cosmx - y)dydxJo J0

14.
/■n/2 /-2+cosO

(0 + lnr)rdrd©
J 0 J l

15. J 1 arctanxydydx
1 x2

16. f f (x2 + y2)dydxJ0 J0



V. Scalar Fields

1. PURPOSE
This program enables you to study analytical and physical

properties of scalar fields defined on square regions in the
XY-plane.

2. DESCRIPTION
A scalar field is a function F that assigns a real

number, or scalar, F(X,Y) to every point (X,Y) in its domain.
Such a function may represent a temperature distribution, an
electric field potential, or the pressure within a region
through which a compressible fluid is flowing.

After entering the function and domain you may (1) plot
the field with small squares centered at lattice points in
the domain showing the magnitude of the field by their size
and the sign of the field by their shading, (2) plot grad F,
(3) plot div F, (4) calculate the values of F, grad F, and
div(grad F) at selected points, and evaluate the line
integral J grad (F) . dR along straight-line paths and
selected city-block paths in the domain of F.

3. STEP BY STEP
Load the program, read the greeting messages, and go on

to the program menu shown in Screen 1. After reading the

237
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menu, press If| to call up the field plot menu shown in
Screen 2.

I f I ie ld: f (x ,y)
IgIradtent: grad f *
IlJaplacian: dtv(grad f)
IyIalues of f, g, l
IpJrRECr PATH LINE INTEGRAL OF GRAD F .
iQlurr
CI
* INCLUDES LINE INTEGRAL OF GRAD F . DR
OVER PATH TRACED AS YOU STEER CURSOR

Screen 1. The program menu.

SCALAR FIELD
F(X,Y) = X * Y

GRAPH WINDOW CENTER
XO = 0 YO = 0

WINDOW WIDTH LATTICE SPACING (10-30)
W = 10 H = 20

ESTIMATED POINT IN WINDOW
AT WHICH MAX. ABS(F(X,Y)) OCCURS
X - 0 Y - 0

IcIhange entry IgIo on ImIenu IqIdtt

Screen 2. The field plot menu.
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The values displayed in Screen 2 show that the current
plot window is a square whose center is (X0,Y0) = (0,0) and
whose sides are 10 units long.

The lattice point spacing is the number of screen
pixels that will separate the centers of contiguous squares
in the plot. The value H = 10 gives the finest resolution
(closest packing), while H = 30 spreads the squares farthest
apart. There is a trade-off between speed and resolution.
With H = 30 you get a rough picture fast. With H = 10 you
get a finer picture, but you may have to wait. When in
doubt, start with H = 15 or H = 20.

The estimated location of the maximum value of If|
tells the computer in advance how to assign square sizes to
function magnitudes in the plot. The largest possible
square size will be used to show function magnitudes close
to the magnitude of F at this point. Larger magnitudes will
also be shown with this square size) smaller magnitudes will
be shown with smaller square sizes. The location of a point
where |f| is maximal will always be shown initially as the
graph window center, and you may wish to enter a new
location before the plotting begins. However, do not worry
if you are unsure of where |f| is largest. You can always
ask the computer to rescale the plot properly after it has
calculated the function values for the first display.

Example 1. The scalar field F(X,Y) = X * Y
This is the program's default example, and, except for

the location of a point where |f| is maximal, the field plot
menu shown in Screen 2 is ready to go.

Press Icl followed by five IrETURNIs and press IJI
IreturnI Isl IreturnI to enter x = 5 and y = 5 as a point
where |f| is maximal. In the forthcoming plot, the largest
square size will be used to show magnitudes greater than or
equal to |F(5,5)I = 5*5 = 25. Press |G| to plot the field
(Screen 3).



240 V. SCALAR FIELDS

OQ da
O D D D
■D D O a
D □ a o

Ta
D
a
•

—Ta a
0 ■
a •

*

•

■
■ •

■ ■

i r —■ ■
■ ■

m

m

• a

■ D

a a

— T
■
■

•

a
o
D

■
■
■

a

a
D
a

■ *■
■ ■ m

■ ■ ■■

a a a.
D D D
pqa

■ ■ ■ ■
■ ■ ■ ■

m

a
■

j

C E N T E R ( 0 , 0 ) U N I T = 1
MAX. ABSOLUTE VALUE OF FIELD APPROX. AT
XJT = -4.64,4^38IrIescale ImIenu IqIuit IJ

Screen 3. The field plot for F(X,Y) = X*Y, with
window center (0,0), window width W = 10, and
square spacing H = 20 screen pixels.

The solid squares in Screen 3 show positive values of
F, the hollow squares negative values. The ticks around the
window frame are one unit apart (screen width W = 10,
divided by 10).

To view the gradient field, press |m| to return to the
main menu. Then press |g| for the gradient plot menu. This
menu is the field plot menu (Screen 2) without the request
for a max |f| location.

Press IgI to plot the field. When you are ready, press
|P| to add the vector magnitudes to the plot. They will be
shown as small squares around the initial points of the
vector elements, as shown in Screen 4.
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QflClQ.&.Ci&'B-frtfB'G'CJfl
CJQElQ.QsQHB'Q-LTQrQ'elLllLli
Q L ^ G { q G ^ a . ( ^ & - ( r i / r f d d [ i
I pLp ip^^^«K.«^ ' ^ r f t4d id lL f l
.pij3pp p^p^s»^ b i h 4 £l
( ^ p p ^ j a j B - c - o - Q ^ b b f a t l
P0^]^)^J-E]'€]'€]sQ,SlD t))3 t)
BESa^-Q-OrEItm'Q'EIQB

(X N T E R ( 0 , 0 ) U N I T = 1
IPlLOT MAGNITUDE |e|RASE MAGNITUDE
iL lTNE INTEGRAL IMIENU iQlUIT |_ |

Screen 4. This plot of the gradient field of
F(X,Y) = X*Y shows both magnitude and direction.

Press |e| to erase the magnitude squares. This feature
is included for the convenience of those who wish to see the
magnitudes first but do not want them during the cursor-
steered line integrations, which use this graphics screen.

Now begin the arrangements for plotting the divergence
of grad F by pressing |m| and |L| • When the Laplacian menu
appears (identical with field plot menu in Screen 2 except
for the replacement of MAX. ABS(F(X,Y)) by
MAX. ABS(DIV(GRAD F)) in the third line from the bottom),
press Ig| to plot the Laplacian with the current values.
Since the Laplacian is identically zero in this example,
there is no point in estimating the location of the field
maximum. The plot (Screen 5) will consist of small square
dots of uniform size.
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1 1 1 — , — 1 —T _ 1 1—
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CENTER (0,0)
MAX. ABSOLUTE VALUE OF FIELD APPRQX. AT

XJT = 4.64, -4.38IrIescale ImIenu Ifilurr |J

Screen 5. The plot of div(grad(X*Y)) = div(YI + XI) =0.

After viewing the divergence plot, press |m| to prepare
for the next example.

Example 2. The electric dipole field
F(X,Y) = X/(X*X + Y*Y)>Nl.5

Press |F| from the main menu, then |c|, and enter in
the formula for F. When you are satisfied with your entry,
press IRETURNI and enter

XO = .1 YO = .1 W = 4 H = 10
one at a time, followed by IkkjlukNIs. The field is not
defined at (0,0), so you must center the field somewhere
else. The point (.l,.l) is far enough away to avoid
arithmetic trouble, but close enough to preserve important
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symmetries in the plot. Note that the default estimate of
the location of maxlFl changes to (.l,.l) as XO and YO are
changed.

Enter X = .3, Y = .3 as the estimate of the location of
MAX|FI. Then press Ig| to plot the field. The result
should look like the plot in Screen 6.

1 1 1 1 - ' 1 " 1 1 • 1

_ -

- . .■■■>■■■ . • « » • •■■
- - "

-
m ■ _- - - a a a a a a a a O m l m l H B * " " " - " " "

-
-
- - . »■■■■ . *■■■ • «
- "

1 I 1 E I 1 1 1 _ . 1

C E N T E R ( . l , . l ) U N I T = . 4
MAX. ABSOLUTE VALUE OF FIELD APPROX. AT

X^Y = . l , . lIrIescale ImIenu IqIuit |J

Screen 6. A plot of the dipole field
F(X,Y) =X/(X*X + Y*Y)*1.5. The "cosine" lobes
are clearly shown.

Now press |M|, |g|, and then |c|, and enter

XO = .1 YO = 0 W = 4 H = 15
for the gradient plot. After checking your values, press
|G| to display tire gradient field. When the display is
complete, press |P| to include the squares that show the
vector magnitudes. No action will be visible for some time
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because the magnitudes away from the center are so small
that the magnitude plots are covered by the direction plots.
The final result should look like the display in Screen 7.

h ' f - ^ N W 1 < / / .
■X X \ ' ' ' ' " - N \ \ I M / / .
\ \ \ \ \ J / • « . ^ . N ! ) / / / • •
s . S S \ \ \ 1 / - N 1 ; / / ^ ^ ^ ^ -
^ k . ^ s . W X , - T / , , ^ ^ „ '
• - - ^ . ^ . ^ ^ g ' f e s . ^ ^ ^ ^ ^ . -
> * * s y j , } t ^ / » \ S s - s n . ^ ^ . -
>■ / / • / ; \ n - ' ; * * ^ S N

> / / / j \ n - " " ^ ^
7 / / 1 C * N —■ " " " ^ 1

(C E N T E R ( . 1 , 0 ) U N I T = . 4
iPlLOT MAGNITUDE |e|RASE MAGNITUDE
iL l lNE INTEGRAL |m|ENU Ig lUTT CI

Screen 7. The gradient of the dipole field in Screen 6,

The field lines in the gradient display diverge from
the positive charge and reconverge at the negative charge.

To calculate l ine integrals in the gradient field,
press Ie| to erase the magnitudes, then |l| for the line
integral. Enter X = 1, Y = 1 for the starting point. A
cross (+) will appear at the point (1,1) and the message at
the bottom of the screen will change to

LINE INTEGRAL TO 1,1 = 0
IuIp IdIown IlIeft IrIight InIew path ImIenu IJ

Press enough I Lis and |d|s to steer the cursor to the point
(-1,0). The motion will be slow because of the time
required by the function evaluations. The computer will
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return the result -1.37 for the integral of GRAD F . DR
along the path traced by the cursor (Screen 8).

Now press |m| for the program menu and |d| to calculate
a d i rec t (s t ra ight - l ine) path in tegra l . Enter

X l = l Y l = l X 2 = - l Y 2 = 0

and press |G| to start the computation. After about 45
seconds, the computer will return the result -1.37.

This concludes the demonstration.

- \ ' \ ' - ' f ! r : ' ' - ' - - ' * s » > ' - : »■W W I I / • / • - „ „ , , x , , , , ,
\ N \ \ ^+4.4/+^+-f -M^l-f -tj+/- / / s s

■ s . N « s \ J \ 1 ^ - N l / / y x ^ ^ ^ "
- - - - > V V \ s ^ ^ ^ ^ ^ ^ ■
- _ _ „ + _ „ N v ^
' ^ ^ , , , j f ^ „ M \ \ \ N N k N w N . -
> y / s / I i n - ' ' 1 ^ ^ s N "
- v , , j i , v v - < - • / ' \ \ \ \ \ •/ / f I I { \ ^
-, / , , , * n - - - " ' M \ \ \ .

1 1 1 1 1 1 1 1 1

S T A R T P A T H A T X = 1 Y = 1
UNIT = .4
LINE INTEGRAL TO -1,0 = -1.37
IuIp IdIown IlIeft IrIight InIew path ImIenu

Screen 8. The value of the line integral along
the marked path from (1,1) to (-1,0) is -1.37.

A. IbscI
To stop a plot in progress, press I ESC I. The option

lines will reappear at the bottom of the screen, and you may
continue as you normally would from there.
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To plot the gradient line elements and magnitudes
simultaneously, press lESCl after the gradient line element
plot has begun and the computer has run long enough to get
some idea about how the magnitudes are running. Then press
|p| • The plotting will begin afresh, with line elements and
magnitude squares together.

PROBLEMS

1. Plot the Laplacian (divergence of the gradient) of
F(X,Y) = X/(X*X + Y*Y) 1.5,_with XO = .1, YO = 0,
W = 4, H = 10. Then press |R| to rescale the plot.

2. a) To investigate the effect of changing the estimate
of the location of maxlFl on field element scaling,
plot the field F(X,Y) = 1/(X*X + Y*Y) with center
(.1,0), W = 2, H = 15, and max locations (.1,0),
( .2 , .2) , and ( .01, .01) .

b) Plot div(grad(F)) with H = 20.

Carry out the steps of Examples 1 and 2 with the functions
and parameter settings in Problems 3-15. Rescale the
divergence plots, if necessary. Experiment with different
parameter settings and integration paths.

3. F(X) = |X|, center (.l,.l), W = 2, H = 20

4. F(X) = Ixl+lYl, center (.l,.l), W = 10, H = 10
5. F(X) = Ixl-lYl, center (. l,. l), W = 10, H = 10
6. F(X) = SIN(X), center (0,0), W = 20, H = 15
7. F(X) = SIN(X+Y), center (0,0), W = 20, H = 15,

max location estimate (.7,.7)
8 . F(X,Y) = 1 / (X*X + Y*Y) .5 , center ( . l , . l ) ,

W = 5, H = 10, max location estimate (.1,0)

9. F(X,Y) = Y/(X*X + 1), center (0,0), W = 8,
H = 10, max location estimate (0,4) •
For the gradient plot, also try W = 4.
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10. F(X,Y) = (X+Y)/(X*X+1), center (0,0),
W = 8, H = 10, max location estimate (0,5).
Also try W = 4.

11. F(X,Y) = (X+Y)/(24C0S(X)), center (0,0), W = 20
H = 10, max location estimate (-16,-18).

12. F(X,Y) = X*Y/(X*X+Y*Y), center (.l,.l), W = 10
H = 15, max location estimate (1,1).

13 . F(X,Y) =X +X/ (X*X4Y*Y) 1 .5 , cen ter ( . l , . l ) ,
W = 8, H = 10, max location estimate (.2,0)

14. F(X,Y) = EXP(-X/5)*00S(Y - X), center (5,5),
W = 10, H = 10, max location estimate (0,0).

15. F(X,Y) = X*X*Y/(X 4 + Y 2), center ( . l , . l ) ,
W = 10, H = 10, max location estimate (-1.33,-1.77)
(Avoid the l ine integral; i t 's very slow.)



W. Vector Fields

1. PURPOSE
This program enables you to study analytical and

physical properties of vector fields of the form
M(X,Y)*I + N(X,Y)*J defined on square regions in the XY-plane.

2. DESCRIPTION
After entering the component functions M(X,Y) and

N(X,Y), you may plot the field over any chosen rectangular
region, plot the field's curl and divergence, and evaluate
the field, curl, and divergence at requested points. You may
also calculate the surface integral of the curl over a given
rectangular region and the flux of the field across the
boundary of a coordinate rectangle. Finally, you may
calculate the line integral of the field along a directed
line segment joining two points or along a variety of city-
block paths between two points in the field's domain.

3. STEP BY STEP
Example 1. The vector field F(X,Y) =Y*I + X*J

and its flux integral.
This is the program's default example. To start, load

the program from the disk menu, read the greeting messages,
and continue on to the program menu, shown in Screen 1.

249
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After reading the program menu, press |F| to call up the
field menu, shown in Screen 2.

IfIield: f(x,y) *
IglURLFIdI ivf
IyIalues of f, c, d
IslURFACE INTEGRAL OF CURL F . N
1^1 INE INTEGRAL OF F . N (FLUX)
IaJrROW PATH LINE INIEGRAL OF F . DR
lojurr
CI
• INCLUDES LINE INTEGRAL OF F . DR

OVER YOUR CURSOR-STEERED PATH

Screen 1 The program menu.

FIELD F(X,Y) = M(X,Y)*I + N(X,Y)*J
M(X,Y) = Y
N(X,Y) = X
GRAPH CENTER, WIDTH, SPACING (10-30)
X O = 0 Y O = 0
W - 1 0 H = 2 0

IcIhange entry IgIo on ImIenu IqIuit |~|

Screen 2. The field menu.

The values in Screen 2 show that the current plot
window is a square whose center is (X0,Y0) - (0,0) and whose
sides are W = 10 units long.

The spacing H is the number of screen pixels that will
separate the init ial points of the plotted vectors. The
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value H = 10 gives the finest resolution (closest packing),
while H = 30 spaces the vector's initial points farthest
apart. With H = 30 you get a rough picture fast. With
H = 10 you get a finer picture, but you may have to wait.
When in doubt, start with H = 15 or H = 20._

To continue the demonstration, press |g| to accept the
current values and plot the field. The plot wil l look l ike
the one in Screen 3.

S N . v . ^ ^ • • • • /

V N S N - . - ^ — * ' ' / / / /

A \ \ \ \ ^ - ^ x y / / / /• , ^ • / / / f f f "
1 1 1 \ \ \ ^

' , , , , , ^ \ \ \• / / / / / / " x -

7 / / / • v \ N \ \ \ .

/ / / ^ ^ ^ . _ ^ . ^ v . \ S \ \
r * % r i i i i i i i i

C E N T E R ( 0 , 0 ) U N I T = 1
MAX FIELD AT -4.64, 4.38
IPlLOT MAGNITUDE |e|RASE MAGNITUDE
iL l lNE INTEGRAL |m|END Iq IU IT |~ |

S c r e e n 3 . Ve c t o r s f r o m t h e fi e l d Y * I + X * J i n
the square window with center (0,0) and width
W = 10. The initial points are H = 15 screen
pixels apart .

The data at the bottom of the display in Screen 3 tell
you that one of the largest vectors plotted has its initial
point at (-4.64,4.38). The ticks around the window frame
are one unit apart (screen width 10, divided by 10).
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Press |P| to add the vector magnitudes to the plot.
They will be shown as squares of different sizes centered at
the initial points of the vectors, as in Screen 4.

qQQQ.QsQs&Q-LTLTLl'CllZini

BE3£t£3-£I-€3-a;£It£m,EI'E3ElE3
C E N T E R ( 0 , 0 ) U N I T « 1
MAX FIELD AT -4.64, 4.38
|||LOT MAGNITUDE IeJrASE MAGNITUDE
iLllNE INTEGRAL Im|END IqIuTT I |

Screen 4. This plot of the field Y * I + X * J
shows both magnitude and direction.

Now press |m| to return to the program menu, and notice
the additional option

IpIrevious GRAPH.

Press |P| to return to Screen 4, and press I RETURN I to
recall the program menu.

Press Ivl to calculate some of the vector and numerical
values of the field. When the data entry menu appears
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(upper portion of Screen 5), press |c| to change entries.
You now have an opportunity to change the field, but, to
continue the demonstration, press two IRkiukNIs to keep the
current component functions. Then press IJI IkkjlukNI 111
IRkiukNI to enter the coordinates (3,1) of the domain point
at which the evaluations will take place. The values
computed will appear in the lower portion of the display, as
shown now in Screen 5.

FIELD F(X,Y) = M(X,Y)*I + N(X,Y)*J
M(X,Y) = Y
N(X,Y) = X
DOMAIN POINT
X= IJI Y = 1

F(X,Y) = II + 3J
MAGNITUDE = 3.16
DIRECTION = .321 + .95 J
CURL F = OK
DIV= 0

IreturnI accept entry IescI abort entry

Screen 5. Function values at the point (3,1).

The cursor is blinking at the X-value of the domain
point, and you may enter additional values for X and Y as
you wish. Try seme. When you are ready to go on, press
lESCl to leave entry mode and |m| to return to the program
menu.

Press IlI on the program menu to try the line integral
for the flux of the field. The display will change to the
one shown in Screen 6.
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FIEID F(X,Y) = M(X,Y)*I + N(X,Y)*J
M(X,Y) = Y
N(X,Y) = X
CENTER OF RECTANGULAR REGION
X = 0 Y = 0

HORIZONTAL, VERTICAL DISTANCE TO SIDES
H = 5 V = 5

IcIhange miry IgIo on ImIenu IqIuit |~|

Screen 6. The flux integral screen.

The flux here is JF . nds, calculated around a
rectangle whose sides are parallel to the coordinate axes in
the XY-plane. The motion is counterclockwise, and n is the
outer unit normal.

The default rectangle is a ten by ten square centered
at the origin. To calculate the outward flux of F across
it, press Ig| • After a brief pause the computer will
respond with the message

FLUX INTEGRAL OF F = 0

Now enter
X = 2 Y = 2 H = 5 V = 6

and press Ig| • The outward flux across this rectangle is
88 units.

Key in other values as you please and, when ready,
press lESCl |m| to leave entry mode and prepare for the next
example.

Example 2. The curl of the vector field
F = - Y * Y * I + X * X * J .

Press Icl on the program menu to call up the curl menu.
Then press Icl to change values and enter the components of
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F by pressing

El HI 1*1 HI IreturnI and Ixl 1*1 Ixl IreturnI
At this point, the curl menu will look like the one in

Screen 7 except perhaps for the coordinates of the graph
center (which will be the ones you were using last) and the
estimated point in the graphing window at which the maximum
magnitude of CURL(F) occurs, whose default coordinates will
always be those of the initial graph center.

FIETJ) F(X,Y) = M(X,Y)*I + N(X,Y)*J
M(X,Y) = -Y*Y
N(X,Y) = X*X
GRAPH CENTER, WIDTH, SPACING (10-30)
X = | 2 | Y O = 2
W = 1 0 H = 2 0

ESTIMATED POINT IN WINDOW
AT WHICH MAX MAG (CURL F) OCCURS
X = 2 Y = 2

IcIhange miry IgIo on ImIenu IqIuit PI
Screen 7. The curl menu.

The curl menu is the field menu with the added request
for an estimate of the location of the maximum field
magnitude in the plotting window. The coordinates of this
location tell the computer in advance how to assign square
sizes in the plot of curl magnitudes, which, except for
sign, is all you will see of the curl vector since it is
perpendicular to the XY-plane. Positive E components are
indicated by solid squares, negative E components by hollow
squares.

The coordinates of the estimated max location will
always coincide with those of the center when the plot curl
menu first appears. This point is sure to be in all
plotting windows. Do not worry if you do not know what to
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enter instead. Just enter the coordinates of some point in
the domain of the field where the curl is not zero. As you
are about to see, you can have the computer rescale the plot
after it has calculated the curl magnitude values for the
first display. In this example, the K-component of curl F
is 2X + 2Y, and we can enter (1,1) as a point where
curlF £ OE (zero times E).

To continue the example, enter

XO = 0 YO = 0 W = 10 H = 15

and then press 111 I RETURN I 111 I RETURN I to enter the
coordinates of the point (1,1) as a point where
curl F £ 0. Then press |g| to plot the curl magnitudes.
The cursor will reappear when the plot is complete. When it
does, press |R| to rescale the plot. The rescaled plot
should look like the one in Screen 8.

mw

m m

O a « ■
a d o • ■

a a a a « •
Q O D o a o v * • »■■■■■
D D D D D d d d d . . . » « *

D D D D D D o o o d . - ■ ■

D D D D D D Q D o d d o - . ■
D D D D D D D D D D d d o ■ •

D D D D D D D D D D D D d o o

■ ■
■ ■

C E N T E R ( 0 , 0 ) U N I T = 1
MAX. FIELD AT_4.46, 4.38
IrIescale ImIenu IqIuit IJ

Screen 8. The rescaled magnitude plot of curl
(-Y*Y*I + X«X*J); center (0,0), W = 10, H = 15,
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Now press |m| to return to the main menu, and press |d|
to call up the menu for plotting the divergence of F. This
menu is identical with the plot curl menu shown in Screen 7
except for the use of ABS(DIV F) in place of MAG (CURL F) in
the estimated max location prompt. In responding to this
prompt you would normally enter the coordinates of a point
where the divergence is not zero. In the present example,
however, DIV(-Y*Y*I + X*X*J) is zero at every point and you
may as well accept the default location estimate X = 0,
Y = 0.

Press |G| to plot the field. The plot should appear as
a rectangular array of dots of uniform size. When the
display is complete press Im| to return to the main menu.

Starting from the main menu, press |A| to display the
straight-line path integral menu, shown here as Screen 9.

FIELD F(X,Y) = M(X,Y)*I + N(X,Y)*J
M(X,Y) = -Y*Y
N(X,Y) = X*X
INITIAL POINT
X I = 0 Y l = 0
TERMINAL POINT
X 2 = 0 Y 2 = 0

IcIhange miry IgIo on ImIenu IqIuit |~|

Screen 9. The straight-line path integral menu.

The menu shown in Screen 9 enables you to calculate the
integral of F . DR along the line segment from the initial
point (XI,Yl) to the terminal point (X2,Y2).
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To calculate

f (2 ,3) t
J ( -Y*Y* I + X*X*J ) . DRJ(0,0)

press Icl, four IRETURNIs, |2l I RETURN! 13.1 I RETURN I IgI.
The computer will return the value -1.98.

Now press lESCl to leave entry mode, Im| to return to
the program menu, and If| IgI to plot the field in
preparation for calculating the integral of the field over
the path traced by the cursor as you steer it around the
plotting window. When the plot is complete, press |l| and
enter 0 for both coordinates of the initial point of the
path. A cross (+) will appear at the point (0,0) in the
center of the field, and the lines

LINE INTEGRAL TO 0,0 = 0
IuIp IdIown IlIeft IrIight InIew path ImIenu

will appear at the bottom of the screen. The keys |u|, |d|,
|l|, and |R| steer the cross in the indicated directions.
Pressing |N| enables you to enter a new starting point, and
pressing |m| recalls the program menu.

Press |R| enough times to steer the cursor to the point
(2.5,0) and press lu| enough times to reach (2.5,2.5).
Watch the integral's values change (bottom line of screen)
as the cursor moves. The value of the line integral from
(0,0) to (2.5,2.5) along the route taken should be given as
15.62.

Continue the line integration by pressing Il| to move
the cursor left to the point (0,2.5). Then return the
cursor to the origin by pressing |d| • At this point the
display should look like the one in Screen 10. The value of
the line integral around the closed path that the cursor has
just traversed is 31.25. The field -Y«Y*I + X*X*J is not a
conservat ive fie ld.
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- — — i 1 1 i 1 i 1 1 r - r r
S . N . * v - s . * ^ ^ _ _ _ _ _ _ * w ' ^ . < n . X N . \
" \ \ \ X n . ^ ^ _ _ _ _ ^ s . n w n \ \ \
\ \ \ \ \ * s n ^ + ^ V + N \ \ \ ■
■1 \ \ \ \ \ \ ^ . ± ^ N \ \ + \ \ \ t "
■ \ \ \ i i t \ \ ^ : J : \ \ i i + i i i i -
■ ] \ \ \ \ \ \ \ \ 4 r + V m + V " « l + t \ \ \ ■
■ \ \ \ \ \ \ \ - s . \ \ \ \ \ | | -
- \ \ \ \ \ \ ^ ^ k . - n s s S \ \ .
■W N W s . ^ , h . s . n S \ \

- \ V , V , S . K ^ ^ ^ _ ^ _ t _ ^ _ ^ ^ t a _ H ^ N ^ ' V \ . \ .

i I 1 I i i 1 I 1

S T A R T P A T H A T X = 0 Y = 0
UNIT = 1
LINE INTEGRALJDO 0,0_= 31.25_
IuIp IdIown IlIeft IrIight InIew path ImIenu IJ

Screen 10. This plot of F = -Y*Y*I + X*X*J leaves out
the vector magnitude squares shown in Screen 8. The
integration path, marked by crosses (+), is easier to
see that way. The value of the line integral of F
counterclockwise around the indicated rectangle is
31.25.

4. IescI
To stop a plot in progress, press I ESC I. The option

lines will reappear at the bottom of the screen and you may
continue as you normally would from there.

To plot vector line elements and magnitudes simulta
neously, press lESCl after the vector field plot has run a
short while. When the option lines reappear, press IFI •
The plotting will begin afresh, with line elements and
magnitudes together.
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PROBLEMS
1. Continuation of Example 2.

F = -Y*Y*I + X*X*J
Plot window: Center (0,0), W = 10, H = 15

a) Calculate the line integral of F clockwise around
the rectangular path shown in Screen 10, starting at
(0 ,0 ) .

b) Calculate the line integral of F counterclockwise
around the rectangular path shown in Screen 10,
start ing at the point (2.5,0) instead of (0,0). Is
the integral 's value sti l l 31.25?

c) Calculate the surface integral of curl F over the 4
unit by 4 unit rectangles centered at (1,1) and
(0 ,0 ) .

d) Calculate the flux integral of F counterclockwise
around the 4 unit by 4 unit rectangles centered at
(1,1) and (0,0). What values would you expect the
clockwise flux integrals to have?

In Problems 2-4, carry out the steps of Examples 1 and 2 for
the field over the given plot window. Experiment with
additional field values and integration paths. Rescale
magnitude plots where necessary.

2. F = I + J
Plot window: Center (5,5), W = 10, H = 10

3 . F = Y * I - X * J
Plot window: Center (0,0), W = 10, H = 15

4. F = -(X/(X2 + Y2))*I - (Y/(X2 + Y2))*J
Plot window: Center (.l,.l), W = 10, H = 20

5. F = (Y/(X2 + Y2)*I - (X/(X2 + Y2)*J
Plot window: Center (.l,.l), W = 10, H = 20



X. First Order Initial Value
Problem

1. DESCRIPTION
This program provides numerical solutions to problems of

the form

y' = f (x,y), y(a) = yQ

over an interval a < x < b with a fourth order Rnnge-Eutta
method with up to one hundred steps. You enter f, a, b, y(a),
and the number of steps. After executing the solution routine
you may elect to see graphs and value tables of both y and y'.
These tables may also be printed.

2. FIRST ORDER INITIAL VALUE PROBLEMS
First order initial value problems usually appear with

the defin i t ion o f the indefin i te in tegra l in ca lcu lus . In
the simplest case, no reference is made to an interval, the
formula for y' depends on x alone, and the problem takes the
form

y ' = f (x ) ; y (a) = yQ.

Initial efforts are often focused on finding a closed form
solution to the problem: we find a formula for y,

y = J f (x)dx + C
and then substitute a for x and yQ for y to find C.

261
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For many initial value problems there are satisfactory
techniques for finding closed form solutions. However, many
problems are difficult or even impossible to solve in closed
form, and such problems are often solved numerically, on a
computer, over a finite interval a <. x <. b.

The simplest numerical methods for solving first order
initial value problems involve computing a table of values

w0' wl' • • •* wn corresP°ndiag to points Xq, Xj, . . ., xn
in [a,b]. The values w^ approximate the corresponding values
of the true solution, y = y(x), of the given problem, i.e.,

w i y ( x i ) * o r i = 0 , 1 , . . . , n .

The present Toolkit program uses a fourth order Runge-
Kutta method to obtain the w^. Under this method a value of
n is chosen, and the points Xq, x^, • • ., x^ are equally
spaced across the interval. The distance between consecutive
points is called the step size and is denoted by h:

h = (b - a)/n,
and the values x^ are

Xq = a, Xj = a + h, X2 = a + 2h, . . .,xn=a + nh = b.
The values of w^ are found as follows: let

w0 " ^0'

and for i = 0, 1, . . ., n - 1 let

wi+1 = w£ + (kx + 2krj + 2k3 + k4)/6,
where

kx = hf (x j^)
kj = M(xi + h/29iri + k^/2)
k3 = hf (x£ + h/2,wi + kj/2)
k4 = hf (x£ + h^ + k3).

Thus, the solution procedure begins at Xq = a, with the
given initial condition used for the first value: Wq = yQ.
Then a horizontal step of h units is taken from Xq to x^, and
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the corresponding vertical step from Wq to w^ is h times a
weighted average of four values of y' near the starting
point. (See Fig. 1.) The procedure is continued across the
interval and terminated at xn = b.

The method is relatively accurate, with an error of
order h at each step, and h across the interval. The cost
of this accuracy is computing time, since four function
evaluations are required at each step. It takes several
seconds to execute the solution routine, even when the number
of steps is relatively small. (You can find more about the
method in a text on numerical methods.)

y0 + k3
y0 + k2/2
y0 + ki/2

/ / / / /
/ / / / /

a a"+ h/2 a + h

Figure 1. The four points in the first Ronge-Eutta step.

3. STEP BY STEP
Load the program from the disk menu, read the greeting

messages, and continue on to the problem display shown in
Screen 1. This is the setting for our first example.

Example 1. Solve the initial value problem

y' » x + y, y (-1) = 1
- ^ o n t h e i n t e r v a l f r o m - 1 t o 1 , u s i n g 2 0 s t e p s .
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EQUATION AND ENDPOINTS

Y' = X + Y
A = -1 B - 1

INITIAL VALUE Y(A) = 1
NUMBER OF STEPS N - 20
IcIhange entry IgIo on IqIuit

Screen 1. The problem display for Example 1.

Solution. The equation and endpoints from this problem are
the ones in the initial problem display in Screen 1. When
you have reviewed the entries, press |g| to execute the
solution routine. In about four seconds, the computer will
present the output menu shown in Screen 2.

Press Isl to graph the solution as shown in Screen 3.
Screen 3 also shows the values of a and b and the minimum
and maximum values computed for y on the interval [a,b] • As
x varies from -1 to 1, the computed values vary from 1 to
5.38904477. Since the closed form solution is

y = e*+1 - x - 1,
the difference between the true 8-place value of y(l),
5.38905610, and the computed value is .00001133.

Now press |R| to rescale the graph to the domain and
range of the computed solution. Pressing |r| again will
reconstruct the original graph (Screen 3).

The graph of Y'(X) can be obtained either by pressing
IdI directly, or by pressing I RETURN! and then |d| from the
output menu. You can "toggle" back and forth between the
graphs of Y and Y' by pressing |S| and |d| alternately. The
graph of Y' is shown in Screen 4.
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OUTPUT MENU

Isl ..solution: graph of y(x)
IgI .. derivative: graph of y'(x)
Ivl .. VALUES FOR Y(X) AND Y'(X)
111 .. HARD COPY OF VALUES
IFI .. PROBLEM DISPLAY
111 .. QUIT

PRESS LETTER OF YOUR CHOICE

Screen 2. The program's output menu.

y .
H — » — » -

GRAPH OF Y<X)

H—I—I—I—H X

A - - 1 B » 1
L O = 1 H I - 5 . 3 8 9 0 4 4 7 7
PRESS R TO RESCALE
PRESS RETURN TO CONTINUE

Screen 3. The graph of the solution Y(X) computed
for the problem y' = x + y, y(-l) = 1.
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H — I t I I J.
GRAPH OF Y»<X>

r > i i i

A - - 1 B - 1
L O = 0 H I = 6 . 3 8 9 0 4 4 7 7
PRESS R TO RESCALE
PRESS RETURN TO CONTINUE

Screen 4. The graph of Y'(X) = EXP(X + 1) - 1,

Complete the demonstration by pressing IRkjltjkNI to
return to the program menu and then Ivl to display the
tables of values of Y and Y'. Pause with a IkkixjkNI to read
any particular segment of the table, and continue with
another IkkjlukNI , as desired. The values displayed for Y
are the computed values Wq, w^, ..., w^q.
displayed for Y' are the numbers

The values

f ( x , fi> = xi + wi-

Press IkkiukNI to return to the output menu.
If your computer is connected to a printer and you know

the slot number of the interface card (the usual number
is 1), you may print the values of Y and Y'. To do so,
press |H| from the output menu, press the slot number, and
press IRETURNI to start printing.

Now return to the output menu, if you are not there
already, and press Ip| for the problem display to prepare for
the next example.
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Example 2. Solve the problem

y' + y = e~x, y(0) = 0
on the interval from 0 to 3, with n = 30.
Solution. Start from the problem display, which will look
like the one in Screen 1 if you have just completed
Example 1. Press Icl. The cursor will jump to the first
character in the current formula for Y', and the lines

IreturnI accept eniry IescI abort eniry
ENTRY LIMIT: 100 CHARACTERS

will appear at the bottom of the screen. You may exit from
change mode at any time by pressing I ESC I. Try it, press
|c| again, and enter

Y' = EXP(-X) -Y A = 0 B = 3 Y(A) =0 N = 30
Press IgI to execute the computation routine and

display the output menu (same as Screen 2) • Then press |s|
to display the graph of Y shown in Screen 5.

GRAPH OF Y<X>

A = 0
LO = 0
PRESS R TO RESCALE
PRESS RETURN TO CONTINUE

B = 3
H I = . 3 6 7 8 7 8 9 7 3

Screen 5. The graph of the solution Y(X) computed
for the problem y' + y = e~x, y(0) =0.
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Press |R| to rescale the graph. Then press Id| to
graph Y' (shown in Screen 6). Press Ir| to rescale this
graph as well, and then toggle between the graphs of Y and
Y' by alternately pressing Isl and |d| .

Press IRejlukNI to return to the output menu, and press
Ivl to examine the value tables for Y and Y'. Press
IRkjlukNI to halt and continue the display, as desired.

The values of y(x) at x = 1, 2, and 3 are .367878973,
.270670344, and .14936115. The true solution of this
problem is y = xe~"x, and these representative values differ
from the corresponding 9-place values of the true solution
by .000000468, .000000222, and .000000551.

Examine also the graph and the table of values for
y'(x). The derivative of the closed form solution of the
problem is y' = e~"x(l - x), and the computed value
-.0995740816 at x = 3 differs from the corresponding value
of the true solution by .0000000551.

Example 3. Evaluate the definite integral

e -2 '2 dx .'0
Solution. Normally integrals with no closed form solution
are best evaluated by integration routines, but we can
approximate many definite integrals with the first order
solver in the manner we now illustrate.

If the init ial value problem

y' = e~x /2, y(0) = 0
is solved on the interval 0 to 1, then the computed value of
the solution at x = 1 will approximate the given integral
because

e x /2 dx = y(l) - y(0).

Since y(0) = 0, the value of the integral equals y(l) and is
therefore approximated by the computed value at x = 1.

Return to the problem display and enter
Y ' = E X P ( - . 5 * X * X ) A = 0 B = l Y ( A ) = 0 N = 2 0
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When the entries have been checked, press IgI then |sl
to solve. The computed value .855624394 at x = 1 can be
obtained from the table of values for y (or in this case
from the maximum value shown under the graph, since the
integrand is positive). This value cannot be checked
directly since it is impossible to solve this problem in
closed form. However, the integrand is a well-known
funct ion: i t is n/2tt t imes the probabi l i ty density
function for the standard normal distribution (bell-shaped
curve), whose values can be found in standard mathematical
tables. If the computed value is divided by JUn, the
quotient is .34144747 which, when rounded, agrees with the
value .34134 taken from 5-place standard normal tables.

A. A MOTE ON APPLICABILITY
The Rnnge-Eutta method used in this program is by no

means a universal solver for first order init ial value
problems. In fact, there are some relatively easy problems
for which the method returns inaccurate results; most
textbooks on numerical analysis contain examples to
i l lus t ra te th is po int . In sp i te of these l imi ta t ions and
the need for caution, the method is a legitimate problem
solving tool that provides insightful information in many
problems, and its value to you will increase as you gain
experience with it.

PROKTKMS

In Problems 1-10, find the computer solution to the
initial value problem over the given interval.

1 . y ' = x /7 , a = 0 , b = 4 , y (0 ) =1 , n = 20

2. y ' = x2 + y2, a = 0, b = 1, y(0) =0, n = 10
3 . y ' ^ - J ^ / x , a = 2 , b = 4 , y ( 2 ) = 2
4. y ' = (x2 + y2)/2y, a = 0, b = 2, y(0) =1, n = 20



2 7 0 X . F I R S T O R D E R I N I T I A L V A L U E P R O B L E M

5. Same as problem 4, except n = 40
6. y ' = cos x, a = n/6, b = n/2, y( i r /6) = - ln2,

n = 10

7. y^-yV, a = 0, b = 2, y(0) = 1
8. xy ' = x + y, a = 1 , b = 4 , y ( l ) =0, n = 60
9 . y ' = x + y / x , a = 1 , b = 4 , y ( l ) = - 3 , n = 3 0
10. Or' = cosO - r, a = n/6, b = 3n/2, y(0) = 3/n,

n = 30

11. In the problem of Example 1, about how large should you
take n to find the true eight-place value, 5.38905610,
of y(l) = e2 - 2? Experiment to find out.

12. Resonance.

a) Graph the solution of the initial value problem
y' = y/x + 3xcos3x, a = .1, b = n, y(.l) = 0,
n = 30. Rescale the graph.

b) Repeat (a) with b = 2n.
c) Repeat (a) with b = 4n and n = 100.

13. a) y ' = cos(x - y), a = 0, b = 3, y(0) =0, n = 30
b) Use the computer results to guess the true

solution, and verify the suspected result.

14. a) y' = (y2sinx)/(2ycosx - 1), a = -n/4, b = n/4,
y(-n/4) = n/2 , n = 20

b) Clear the differential equation of fractions and
show that the resulting equation is exact. Then
solve the init ial value problem directly.

15. Evaluate f sin(x2)dx with (a) n = 20 and (b) n = 40.
J 0

(Ve^dx.
J 0

' 0

16 • Evaluate



YL Second Order Initial
Value Problem

1. DESCRIPTION
This program provides numerical solutions to problems of

the form

y " = f ( x , y , y ' ) j y ( a ) = y Q , y ' ( a ) = y ' Q

for y = y(x) and y' = y' (x) over an interval a <. x <. b with a
fourth order Runge-Kutta method with up to one hundred steps.
After entering f, a, b, y^, y'Q, and the number of steps,
you may elect to see graphs and to view and print value tables
of both y and y'.

2. SECOND ORDER INITIAL VALUE PROBLEMS
The second order initial value problem

y" = f(x)$ y(a) = yQ, y'(a) = y'Q

is usually studied early in calculus. In determining the
posit ion of a moving particle from its acceleration, init ial
position, and init ial velocity, for example, the problem
appears with x as time and y as position. The problem is
then solved by integrating f (x) twice and substituting values
given for y and y' at x = a to find the constants of
in tegra t ion .

Second order initial value problems appear also in the
introduction to ordinary differential equations found in many
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calculus books. Introductory presentations are often l imited
to problems of the form

py" + qy' + ry = g(x); y(a) = yQ, y'(a) = y'Q,

where p, q, and r are constants and p £ 0. The equation in
this problem is linear with constant coefficients, and the
explicit form of the function defining y" is

f (x ,y,y ' ) = (g(x) - qy ' - ry ) /p .
One finds a closed form solution by first solving the
equation with g(x) = 0, then finding a particular solution to
the full equation, adding these solutions to form the general
solution, and evaluating the two constants in the general
so lu t ion .

For many problems, such as the ones that arise in
describing the motion of an harmonic oscillator with an
elementary forcing function, these techniques yield
satisfactory results. However, there are many important
problems for which other techniques are superior. One such
technique is the application of numerical methods, with
implementation on a computer.

The simplest numerical methods for second order initial
value problems involve computing two tables of values,

Wq, Wj, . . ., wn and Uq, Uj, . . ., u^

corresponding to points

Xq, Xj, . . ., xn

in the given interval. The Wj approximate the values y(x^)
of the function, and the ui approximate the values y'(x^) of
i t s fi r s t d e r i v a t i v e .

The Toolkit program uses a fourth order Rnnge-Eutta
solver to obtain the values w^ and u^. Under this method,
the points Xq, xj, . . •» xn are equally spaced across the
interval. The distance between consecutive points is called
the step size and is denoted by h:

h = (b - a)/n,
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and the x^ are given by
xq = a, x^ = a + h, X2 - a + 2h, ..., xn=a + nh = b.
The corresponding values of w^ and u^ are found as follows:

w0 = y0' u0 = yV
and, for i = 0, 1, . . ., n - 1,

wi+l * wi + h*ui + (ki + ^2 + k3)/6)
ui+l = ui + *kl + 2k2 + 2k3 + k4^6'

where
kj = hf (x^w^Uj)
kj = hf (x£+ h/29wi + huj/2 + hkj/8,^ + kj/2)
k3 = hf (xi + h/2^ + huj/2 + hkj/S,^ + k2/2)
k4 = hf (x£ + h,W£ + hui + hk3/2,ui + k3) .
The method is relatively accurate, with error of order

h5 at each step, and h across the interval.

3. STEP BY STEP
Load the program from the menu, read the greeting

messages, and continue on to the problem display in
Screen 1, which sets the stage for the first example.

EQUATION AND ENDPOINTS
Y" = -4 * Y
A = 0 B = 3.14159265

INITIAL VALUES
Y(A) = 0 Y'(A) =1
NUMBER OF STEPS N = 20

IcIhange entry IgIo on IqIuit
Screen 1. The problem display.
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Example 1. Solve the initial value problem
y " = - 4 y , y ( 0 ) = 0 , y ' ( 0 ) = 1

on the interval from 0 to n, using n = 20 steps.
Solution. The equation and endpoints from this problem are
the ones in the initial problem display in Screen 1. When
you have reviewed the entries, press |G| to execute the
solution routine. In about four seconds, the computer will
present the output menu shown in Screen 2.

OUTPUT MENU
Isl ..SOLUTION: GRAPH OF Y(X)
iDl .. DERIVATIVE: GRAPH OF Y'(X)
Ivl .. VALUES OF Y(X) AND Y'(X)
HI .. HARD COPY OF VALUES
IPl .. PROBLEM DISPLAY
iQl .. ourr
PRESS LETTER OF YOUR CHOICE l_|

Screen 2. The output menu.

Press |s| to graph the solution computed for Y(X),
shown in Screen 3, and press |R| to rescale.

The LO and HI in Screen 3 are the minimum and maximum
values computed for y on the interval [a,b] •

The graph in Screen 3 suggests that the exact solution
is y = .5 sin2x, as can be readily verified by substituting
the expression and its second derivative in the equation
y» = -4y and checking the initial conditions. From
expression y = .5 sin2x we find that the high value
computed for y at x = 3n/4 is in error by less than .00003.

Now press Id| to display the graph of Y'(X) shown in
Screen 4, and press Ir| to rescale. The graph shows a full
period of the exact derivative y' = cos 2x along with the
minimum and maximum values computed over the interval.
After viewing the graph, press Isl and |d| alternately to
"toggle" between the graphs of Y and Y'.
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GRAPH OF V<X>

A - 0 B - 3 . 1 4 1 5 9 2 6 5
L O = - . 4 9 9 9 6 1 6 8 8 H I - . 4 9 9 9 7 0 0 3 8
PRESS R TO RESCALE
PRESS RETURN TO CONTINUE

Screen 3 • The graph of the solution Y(X) computed
for the problem y" = -4y, y(0) = 0, y'(0) = 1.

GRAPH OF Y'<X>

A = 0 B = 3 . 1 4 1 5 9 2 6 5
L O = - . 9 9 9 9 8 3 3 0 5 H I = 1
PRESS R TO RESCALE
PRESS RETURN TO CONTINUE

Screen 4. The graph of the values computed for Y'(X),
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Press I RETURN| to return to the output menu, and press
Ivl to list the values computed for Y and Y'. You may halt
and continue the listing as desired by pressing IkkiukNI .
The error in the value computed for y at x = n is

I-9.4500E-05 - .5 sin2nl = 9.4500E-05,
a reasonable result in view of the relatively large step
size of n/20. The value .999966601 computed for y' = cos 2x
at x = n is in error by less than four parts in a hundred
thousand.

With n = 40 steps (and very little more computing time)
we would find y(n) = 5.96265136E-06 and y'(n) = .999998956,
which are definite improvements over the results for n = 20.

If your computer is connected to a printer and you know
the slot number of the interface card (the usual number is
1) > you may print the values of Y and Y' • To do so, press
IgI from the output menu, press the slot number, and press
IRETURNI to start printing.

Now return to the output menu, if you are not there
already, and press |p| for the problem display to prepare
for the next example.

Example 2. Solve the initial value problem

y» + yf + y = (x _ i)e"x, y(0) = 0, y'(0) = 1
on the interval 0 to 3, using n = 30 steps.

Solution. Start from the problem display, which will look
like the one in Screen 1 if you have just completed
Example 1. Press Icl for change mode. The cursor will jump
to the first character in the current formula for Y', and
the l ines

use |z| for the variable y'
IreturnI accept entry IescI abort entry

ENIRY LIMIT: 100 CHARACTERS

will appear at the bottom of the screen. You may exit from
change mode at any time by pressing I ESC I. Try it, press
lc| again, and, using Z for the variable Y', enter
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Y" = -Z - Y + (X - 1)*EXP(-X)
A = 0 B = 3 Y ( A ) = 0 Y ' ( A ) = 1 N = 3 0

After checking your entries, press IgI to execute the
computation routine and display the output menu (same as
Screen 2) • Then press Isl to display the graph of Y shown
in Screen 5.

GRAPH OF Y<X>

A = 0 B -
L O - 0 H I =
PRESS R TO RESCALE
PRESS RETURN TO CONTINUE

.367880 16

Screen 5. The graph of the solution Y(X) computed
for the problem y" + y + y' = (x - l)e~x,
y(0) = 0, y'(0) = 1.

Screen 5 shows the maximum computed value
HI = .36788016. The exact solution to this problem is
y = xe~x, and at x = 1 this function achieves a maximum of
1/e, which is .36787944 to 8 places.

Now graph y', and note, for example, that this display
reflects the behavior of y relative to the increase or
decrease in values. The minimum value computed for y' is
-.13533524. The derivative of the exact solution is
y' = (1 - x)e~~x, and the computed minimum value compares
well with the true eight-place value -e~2 = -.13533528.
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For another measure of accuracy, examine the tables of
values for y and y', checking especially the values at
x = 3. The computed value of y at x = 3 is .149362123,
which differs by .000000918 from .149361205, the nine-place
value of the exact solution. The corresponding difference
for y' is .000000659.

Example 3. Solve the initial value problem

y " = y ( x 2 - l ) , y ( 0 ) = l , y ' ( 0 ) = 0
on the interval 0 to 2, using 20 steps.
Solution. Go to the problem display to enter

Y" = Y * (X * X - 1) A=0 B = 2

Y(A) = 1 Y'(A) =0 N = 20

Then press IgI and |s| to graph the solution (Screen 6) •

GRAPH OF Y<X>

A -
L O - . 1 3 5 3 3 7 4
PRESS R TO RESCALE
PRESS RETURN TO CONTINUE

Screen 6. The graph of the solution Y(X) computed
for the problem y" = y(x2 -1), y(0) = 1,
y'(0) = 0.
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The display in Screen 6 shows a curve starting from
y = 1 with slope 0 at x = 0, then descending to .1353374 at
x = 2. The graph suggests an inflection point near x = 1.

The computer solution agrees quite well with the exact
solution, which is y = exp(-x2/2). Those who have studied
probability or statistics may recognize this expression as
the standard normal probability density function multiplied
by \/2n, and the graph as a segment of the standard bell-
shaped curve. As a measure of accuracy, compare the value
computed at x = 2 with the 7-place value of e~ , which is
.1353353: the difference is .0000021.

Press Id| to continue on to graph y', noting the
excellent agreement of the computed solution with the
derivative of the true solution, y' = -x exp(-x 12). You
may also wish to examine the tables of values to complete
this example.

A. ON USING NUMERICAL METHODS
The Runge-Eutta method used in this program yields

reasonable solutions for many, but by no means all, second
order initial value problems. Just as closed form methods
fail for some problems, Runge-Eutta methods also fail for
some of the same ones, and for some different ones, too.
When these methods fail, a variety of other numerical
methods, as well as series and transform techniques, may
apply. The compleat problem solver is prepared with a good
repertoire of methods, of which the present Runge-Eutta
method is but one.

PROBLEMS
Solve each initial value problem over the interval

[a,b] with the given step size n.

1. y" = -y' - 5yi y(0) = 4, y'(0) = -2, a = 0, b = 8,
n = 40

Exact solution: y = 4e~x'2 cos 2x.
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2. y" + 4xyy' + 2^ = 0\ y(0) = 1, y'(0) = 0, a = 0,
b = 3, n = 15

Exact solution: y = 1/(1 + x2).
3. y" + 16y = 8 cos 4xj y(0) = 0, y'(0) = 0, a = 0,

b = 4 , n = 4 0 > — * <
Exact solution: y = x sin4x.

4. y" + xy' + 2y = 0% y(0) = 0, y'(0) = 1, a = 0, b = 3,
n = 2 0 0* r /2E x a c t s o l u t i o n : y = x e .

5. Repeat Problem 4 with n = 10.

6. y" + 4y' + 4y = xe~x; y(0) = 1, y'(0) = 1, a = 0,
b = 2, n = 10

Exact solution: y = (1 + 3x + x3/6)e~x.
7. x2y" + 6xy' + 6y = 12-, y(l) = 4, y'(l) = 1, a = 1,

b = 4, n = 30
Exact solution: y = 5x"2 - 3x~3 + 2.

8. x2y" + 5xy + 4y = 0% y(l) = 1, y'(l) = -1, a = 1,
b = 5, n = 30

Exact solution: y = (1 + lnx)/x2.
9. x2y" + 3xy + y = 0; y(l) = 0, y'(l) = 1, a = 1, b = 4,

n = 30
E x a c t s o l u t i o n : y = ( l n x ) / x .

10. 16y" + 8y' + 145y = 0% y(0) = 1, y'(0) = 1, a = 0,
b = 4, n = 20

Exact solution: y = e~x^4(cos 3x + (5/12) sin3x).
11. (1 + x2)y" - xy' + 4y = 0% y(0) = 1, y'(0) = 0, a = 0,

b = 3, n = 30
00

Series solution: y = 1 + £ - 4<1 +^~ ^ x211.
n = l < - e * - r )



Z. Damped Oscillator

1. DESCRIPTION
This program allows you to explore solutions of the

equation
X*(T) + GK'(T) + <W0)*X(T) = 0.

After entering the coefficients, you may elect to see the
graphs of X(T) (displacement vs. time) and X'(T) (velocity vs.
time), and the phase plane plot of velocity vs. displacement.

2 0 0You may also graph the energy E = (X') + Wq^Xz vs. time, and
request the numerical values of the displacement, velocity,
and energy for different times.

2. DAMPED OSCILLATORS
A simple harmonic oscillator is a mass that moves along

a straight line under the action of a force

F =-kX
that is opposite in direction and proportional in magnitude
to the mass's displacement.

281
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I M V/ «J »j V V V/i II 1

Equilibrium'
position

^ ~ * r M !F = -kx

Fig. 1. Model for periodic motion. If the spring
obeys Hooke's law and there is no retarding force,
the motion is simple harmonic motion.

If we write
F = mA(T),

the equation

A ( T ) = - J x ( T ) ( 1 )
describes the motion. Since the acceleration A(T) of the
mass is the second derivative of the displacement with
respect to time, Eq.(l) can be rewritten as

or
X"(T) =- £X(T)

X " ( T ) + £ x ( T ) = 0 . ( 2 )m
Equation (2) is a differential equation for the displacement
X(T) of the mass.

If the oscillating mass is subject not only to restoring
force that is proportional to displacement but also to a
retarding force such as friction or viscous drag (the block
in Fig. 1 scrapes on the floor, or is immersed in a fluid),
then the retarding force will damp out the motion after the
system has been started and left to run. Such an oscillator
is called a damped oscillator.

The simplest form of retarding force, and the one that
leads to the simplest mathematical model of an oscillator
with damping, is one in which the retarding force is opposite
in direction and proportional in magnitude to the velocity:
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Retarding force = -bV(T), b > 0.
Newton's second law, F = mA, then gives

-bV(T) - kX(T) = mA(T),
o r

A ( T ) = - J v ( T ) - | x ( T ) , ( 3 )
as an equation for the motion. Since the velocity and the
acceleration are the first and second derivatives of the
displacement with respect to time, Eq.(3) can be written as

X " ( T ) + | x ' ( T ) + | X ( T ) = 0 . ( 4 )

Like Eq.(2), Eq.(4) is a differential equation for the
displacement X(T) of the mass. Equation (2) is Eq.(4) with
b = 0.

The quantity b/m is frequently represented by the Greek
letter gamma, but in this program it appears as G. The
quantity k/m is also Wq , the square of the natural angular
frequency of the oscillator, and in this program it appears
as (WO)2. With these notational changes, Eq.(4) becomes

X " ( T ) + G X ' ( T ) + ( W 0 ) ? X ( T ) = 0 . ( 5 )
The program enables you to explore the solutions of

Eqs.(2) and (4) and the ways in which they depend on the
initial values of the displacement and the velocity.

Even if you have learned how to solve Eqs.(2) and (4),
you can use this program to examine many more cases than you
could reasonably examine if you had to plot the solutions by
hand. In particular, the program can help you to review and
learn more about

simple pendula
masses on springs
simple harmonic motion
period, frequency, angular frequency
amplitude
conservation of energy
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3 . STEP BY STEP

After loading the program, read the greeting messages
and continue on to the input menu, shown in Screen 1.

X" + GX' + (TO)2! - 0
G = 0 WO - 1.5708

XO = 24 VO = 0

IdIisplacement:
IvIelocity:

X VST
V VST

IpIhase plane:
IeInergy vs t

V VS X

IglRDINATES OF XInIew screen
, V, E

IrIescale graph
IcIhange values
IqIutt

OIRETURNI TO PLOT

Screen 1. The input menu.

The letters on the left side of the Screen 1 are
abbreviations for the available operations. Press
|DI to display displacement vs. time.
Ivl to display velocity vs. time as a graph working its way

down from a horizontal line that represents the initial
energy of the system.

|p| (for phase plane) to display velocity vs. displacement.
Ie| to display the energy vs. time.
lo| (for ordinates) to obtain numerical values of time,

displacement, velocity, and energy (in ergs, or units
of gm cm Is ). A vertical line is plotted at a small
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vaiue of the time. Press |;Oj and l<cJ to move the
vert ica l l ine ( in i t ia l ly concealed by the ver t ica l
axis) to different values of the abscissa. The values
for T, X, V, and E will appear at the bottom of the
screen. You may stop the ordinate presentation and
return to graphics mode at any time by pressing lESCl.
You may return to the input menu at any time by
pressing I RETURN I.

|R| to resca le .
In| for a new screen.
Ic l to change the osci l lator.
|Q| to quit the program.

Special command features. You need not return from the
graphics screen to the input menu to execute menu options.
You may overlay graphs or clear the screen between displays
by commands directly from the graphics screen. You may also
stop a plot in progress by pressing I ESC I.

Example 1. A body of mass 10 gm moves with simple harmonic
motion of amplitude 24 cm (maximumlxl) and period 4 s. The
position coordinate is +24 cm (its maximum) when T = 0.
Compute

a) the position of the body at T = 0.5 s
b) the magnitude and the direction of the force acting on

the body at T = 0.5 s
c) the minimum time required for the body to move from its

initial position to the point where X = -12 cm
d) the velocity of the body when X = -12 cm

Then plot the energy of the system and examine the phase
plane.
Solution. The values of G, WO, X(0), and V(0) for this
problem are the ones currently entered in the input menu.
The value of WO is determined by observing that

WO = ———period
and the period is 4 s:
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WO = 1.5708
seconds *

The first part of the problem we are solving asks for
the position of the body at T = 0.5 s, Display the
displacement vs. time by pressing |d|. The computer will
draw the plot shown in Screen 2.

G = 0 W O = 1 . 5 7 0 8
X O = 2 4 V O = 0 > — h
IreturnI to menu IJ

Screen 2. Undamped X vs. T.

The program initially chooses the time scale to display
5 periods of the natural angular frequency. It will
automatically clear the screen and rescale the axis whenever
you rescale the time or choose a new WO.

To find the position of the body at T = 0.5 s, press
|o| for ordinate and then press \zl\ until the numerical
display at the bottom of the screen shows T = .5. The
problem here, we soon find, is that the T-values skip from
•4 to .6 as they increase from the starting time to T = 0.
To find the value of X(T) when T = .5 we must rescale.

Press I ESC I to leave ordinate mode, and then press |R|.
The message at the bottom of the screen will change to
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TMAX = |2|0
VMAX = 86.4876
IreturnI accept entry

XMAX = 55.0597
EMAX = 1421.22

IescI abort miry.
The numbers here are the maximum values the computer is
currently showing on the coordinate axes. Do not confuse
these values with the maximum values of the variables in the
oscillating system. For example, the oscillator we are
studying has an amplitude of X = 24 cm. The displayed
XMAX = 55.06 tells us that the vertical axis on the screen
reaches 55.06 cm. We therefore expect the graph of X(T) to
go about halfway up, as it does in Screen 2.

Since we wish to change the time scale, press |2|
IkkitjkNI • This erases the old graph as well) the screen is
cleared automatically whenever TMAX or WO is changed. Press
lESCl to leave input mode. You may now replot the
displacement vs. time by pressing Id| to obtain the display
in Screen 3.

G = 0 W O = 1 . 5 7 0 8
X O = 2 4 _ T O = 0
IreturnI to menu I I

Screen 3. The graph of X(T) with 0iT< TMAX = 2,
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If we now press lol and then |->|REPT| to move the
vertical line, we can see from the data at the bottom of the
screen that X is approximately 17 cm when T = .5.

The second part of the problem asks us to compute the
force on the body at T = 0.5 s. We know that at T = 0.5 s
the displacement is 17 cm, and that the force is given by

F = - k X .
To compute F, we must first determine the value of k. We
know that

(WO)2 = k/m

and that WO = 1.5708 and m = 10gm. Thus

k = m(WO)2 = 10(1.5708) (1.5708) = 24.67 dyne/cm.

When X = 17 cm, the force is

F = -(24.67)(17) = -419.5 dyne.
The third part of our problem asks for the minimum time

for the body to move from its initial position to the point
where X = -12 cm. By pressing I->|REPT| to move further
along the time axis on the ordinate screen, we see that X
reaches the value of -12 cm at about 1.34 seconds. At that
time the velocity is approximately -32.4 cm/sec.

Now press lESCl and Ivl to plot the velocity V(T) shown
in Screen 4.

Press Ie| to plot the energy vs. time. The graph in
this case is the horizontal l ine that represents the init ial
energy of the system. (If you tire of watching the plot,
press lESCl.) There is no retarding force l ike friction to
drain energy away, there is no external force to add energy,
and G = 0.

Rescale the time so that T MAX = 4 and plot the
displacement vs. velocity by pressing InI |p|. The
completed plot will look like the one in Screen 5.



Z. DAMPED OSCILLATOR 289

WO = 1.5708
V0 = 0

IreturnI to menu I I

Screen 4. X(T) and V(T) together for 0 < T < TMAX = 2,

Screen 5. The phase plane, V(T) vs. X(T), 0 IT < 4.
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The phase plane is a closed curve because

V ( T ) 2 + ( W ) h m 2 = c o n s t . ( 6 )
for the system under study (see Problem 10). Thus, the
graph of V vs. X is an ellipse. From a physical point of
view we expect the graph to be a closed loop because the
energy of the system is constant.

Example 2. Add a retarding force with G = .3 to the
oscillator of Example 1. Graph X(T), V(T), and E(T) and
then plot V vs. X in the phase plane.
Solution. Press IkkiukNI for the input menu, and press Icl
111 IJI IkkiukNI lESCl to enter G = .3. Then press |r| to
rescale time and enter TMAX = 20. Next press |d| to graph
the displacement X(T), shown in Screen 6. After that, press
|N| Ivl to graph the velocity (Screen 7). Finally, press
|n| 111 to graph the energy (Screen 8).

Screen 6. X(T) when G = .3, 0 £ T < 20.
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G - . 3 W O = 1 . 5 7 0 8 0
X O - 2 4 _ V O = 0
I return! to mend IJ

Screen 7. V(T) when G = .3, 0 1 T < 20.

G = . 3 W O = 1 . 5 7 0 8 0
X O - 2 4 _ V O = 0
IRETURN I TO MEND I I

Screen 8. E(T) for G = .3, 0 i T < 20.
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As time passes, energy is drained from the system and
the energy drops toward zero from its initial level. Note
the step-like character of the energy curve. The slope
(rate at which energy is lost) varies with the velocity,
being greatest when the mass is moving fast, and least when
V is near zero. (See Problem 11.)

Before graphing V vs. X in the phase plane, press Ir|
and rescale the display by entering

XMAX = 25 VMAX = 40

Then press InI and |P|. The resulting display is shown in
Screen 9.

TMAX = 20
VMAX = 40

XMAX = 25
EMAX = 1421.22

IreturnI to menu IJ

Screen 9. The phase plane plot, V vs. X, shows V
and X decreasing with time as energy is drained
from the oscillating system.
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PROBLEMS

1. What physical pr inciple is i l lustrated by the fact that
the plot of displacement vs. velocity is a closed curve
when there is no damping? Is your answer consistent
with what you have seen the displacement vs. time curve
to be in a case in which there is no damping?

2. If you look carefully at a plot of energy vs. time in a
lightly damped (G small compared to WO) system, you
will see that there are regions in which the energy vs.
t ime curve is very nearly horizontal ( i .e., parallel to
the time axis) • Explain this phenomenon physically.

3. For a fixed value of WO, find the period of the
oscillator as a function of G. Plot the frequency of
the damped oscillator as a function of G/2W0. Plot the
frequency of the damped oscillator as a function of
(G/2W0)A2.

4. When an oscillator is damped, its angular frequency W
is less than the "natural" angular frequency WO that
the oscillator would have with the same m and F if no
damping were present. The two frequencies are related
by the equation

W2 = WO? - G2/4.
a) What is the frequency of the oscillator when

G = 2W0?
b) Try various cases, like G = 4 and WO = 2, in the

oscil lator described in the text.

5. For a fixed set of ini t ial condit ions, examine the
behavior of the solutions for:

G > 2W0 (solution oscillates)
G = 2W0 (critical damping)
G < 2W0 (overdamped).

Give a physical explanation of each behavior.
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6. Show that if G is small (compared to what?) then the
energy in the system goes down exponentially.

7. How can you estimate the values of G and WO for a
playground swing?

8. How can you estimate the values of G and WO for a
tuning fork?

9. If you choose a negative value for G, all the variables
behave oddly. Give a physical explanation for what the
mathematical model "thinks" is going on.

10. Ver i fy Eq.(6) by di fferent iat ing i ts lef t -hand side
with respect to T, factoring out V = X(T), and showing
that the remaining factor is the left-hand side of
Eq.(5) with G = 0. In mathematical terms, Eq.(6) holds
when G = 0 because X'(T) is then an integrating factor
for Eq.(5).

11. Enter G = .3, WO = 2, XO = 24, and VO = 0 and graph the
energy E(T). Add the graph of V(T) to the display to
see the relation between V and the slope of E(T) •
Energy is lost more rapidly when Ivl is large than it
is when V is close to zero.



Control-Z. Forced Damped Oscillator

1. PURPOSE
This program enables you to investigate the behavior of

forced damped oscillators.

2. DESCRIPTION
In this program the oscillator of Program Z is driven by

an external force (f/m)cos(o>t) that varies periodically in
time with an angular frequency o>. The oscillator's equation
of motion is

X"( t ) + Jx ' ( t ) + j jX( t ) = Jcos(wt) .
In the program it appears as

X" + GX' + (WO)^ = F COS (WT).

The quantity F = f/m is the driving force per unit mass.
The behavior of a forced damped oscillator is more

complex (and interesting) than that of an undriven
oscillator. This program will help you to review and learn
more about simple harmonic motion) period, frequency, angular
frequency, amplitude) conservation of energy) forced
oscillations) resonance) homogeneous and nonhomogeneous
second order linear differential equations with constant
c o e f fi c i e n t s .
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3. RELATION TO "DAMPED OSCILLATOR"
The present program is similar to DAMPED OSCILLATOR in

form as well as content. Basically, DAMPED OSCILLATOR may
be regarded as FORCED DAMPED OSCILLATOR with F set equal to
0. We shall assume that you have already worked through the
examples in Chapter Z.

4. STEP BY STEP
Load the program by holding down the CTRL key and

press ing |z | . (Do not press Iz l fi rs t , for th is wi l l
indicate the preceding program, DAMPED OSCILLATOR.) Read
the greeting messages and go on to the input menu, shown in
Screen 1.

X" + GX' + (WO)^ - F COS(WT)
G = l W O = 2 F = 4 0
W = 4 X 0 = 2 4 V O = 0

IdIisplacement: x vs t
IvIelocity: v vs t
IpIhase plane: v vs x
IeInergy vs t
IfIforcing function vs t
ItIransient vs t
IsJteady state vs t
IbIoth
IqIrdinates OF X, V, E
InJew screen
IrIescale graph
I RETURN I TO PLOT |c|HANGE VALUES |q|UIT |~|

Screen 1. The input menu.
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As in the program DAMPED OSCILLATOR, G measures the
damping in the system and WO is the natural angular
frequency of the oscillator. The quantity F is the
amplitude of the driving force per unit mass (dimensions in
mks are newtons/kilogram) and W is the angular frequency of
the driving force.

The program opens with G, WO, F, W, XO, and VO set for
Example 1.

The letters on the left side of the screen are
abbreviations for the operations now available to you. To
select one of these options, press

|DI to display displacement vs. time
lyl to display veloci ty vs. t ime
|P| (for phase plane) to display velocity vs. displacement
|E| to display the energy E vs. time
|FI to display the driving force vs. time
|TI for the transient mode
Isl for the steady state mode
IbI for both transient and steady state combined. This is

the default mode of the program.
lol (for ordinates) to obtain numerical values of time,

displacement, velocity, and energy. A vert ical l ine is
plotted at a small value of time. Press I^Oj and l<-|
to move the vertical line (initially concealed by the
vert ical axis) to different values of the abscissa. A
table of values for T, X, V, and E will appear across
the bottom of the screen. You can leave the ordinate
presentation via lESCl or I RETURN!, the latter
returning you to the input menu.

|R| to rescale.
|N| to clear the screen.
Icl to change parameter values.
Ifil to quit the program.

As with DAMPED OSCILLATOR, graphs can be displayed on
the screen together to show relationships among variables.

The program automatically chooses the initial time
scale to display 5 periods of the natural angular frequency.
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It will automatically clear the screen and rescale the axis
whenever you rescale time or choose a new WO.

Example 1. Investigate the behavior of the forced damped
o s c i l l a t o r i f

G = l WO = 2 F = 40 W=4 X0 = 24 V0 = 0

Scale the display axes with
TMAX = 10 XMAX = 30 VMAX = 10 and EHAX = 1500

Solution. We are asked to investigate the behavior of the
oscillator for the first ten seconds. From a mathematical
point of view we are being asked to investigate the solution
of the equation

X" + X' + 4X = 40 C0S(4T), 0 < T < 10

subject to the init ial condit ions
X0 = 24 and V0 = 0.

The program enables us to investigate physical properties of
the oscil lator as well.

Press |R| and enter the suggested maximum values of T,
X, V, and E. When the values have been entered, press |d|
to graph the displacement X(T) (Screen 2) •

The solution X(T) shown in Screen 2 is the sum of two
functions, X^T), a solution of the homogeneous equation

X" +X' +4X = 0,

and 2L(T), a particular solution of the equation
X" + X' + 4X = 40C0S(4T).

The constants in X^(T) have been chosen to make the sum

X(T) = Xh(T) + Xp(T)

satisfy the initial conditions of the problem (more about
this in a moment).
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Screen 2. The graph of X(T), 0 <. T <. 10.

G = l W O = 2 F = 4 0
W = 4 X O = 2 4 V O = 0
I RETURN I TO MEND IJ (TRANSIENT MODE)

Screen 3. The graph of Xfi(T), the homogeneous or
transient part of X(T), 0 <. T 1 10.
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Now press |t| for the transient mode, In| for a new
screen, and |d| for a graph of the transient displacement
X^(T). The result is shown in Screen 3 •

Next, press In| HI IgI to graph X^d) (Screen 4).
To compare the graphs of Xh(T) and Xp(T) more closely

we add the graph of X^(T) to Screen 4. Press |t| and then
IdI without first clearing the screen. (See Screen 5.)

It is the sum X(T) = Xj^T) + X(T) that is graphed in
Screen 2. Note that neither X^(T) nor Xp(T) alone satisfies
the initial condition X(0) = 24 set forth for X(T). The
value of Xj^O) is greater than 24, and Xp(0) is negative.
It is the sum of Xj^O) and Xp(0) that equals 24. When you
are ready, add the graph of X(T) to the display in Screen 5
by pressing |b| |d| .

G = l W O = 2 F = 4 0
W = 4 X O = 2 4 V O = 0
IreturnI to menu IJ (steady state mode)

Screen 4. The graph of Xp(T), the particular or
steady state part of X(T).
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G = l W O = 2 F = 4 0
W = 4 X O = 2 4 V O = 0
IreturnI to menu IJ (transient mode)

Screen 5. \(T) and Xp(T) together for 0 £ T <. 10.

To see the phase plane, press |n| for a new screen.
Then press |R| to rescale and enter VMAX = 50 and XMAX = 18,
leaving the other settings as they are. Press IFI. The
resulting graph of V(T) vs. X(T) is shown in Screen 6. If
you wish, you may superimpose the graphs of X(T) and V(T) to
correlate the information.

The phase plane plot is also available in the transient
and steady state modes. For example, to see the graph of
Xj^T) vs. Xh(T), press |N| |t| |F|. This graph can also
be correlated with the individual graphs of X. (T) and
\ ( T ) .

To conclude the example, plot the energy E(T) and the
velocity V(T) in a common display and note the relationship
between the two. Pay particular attention to the energy
curve when the graph of V(T) is approximately horizontal,
and vice versa.
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Screen 6. V(T) vs. X(T) for the driven
oscillator, 0 <. T < 10. The path starts on the
far right with X = 24, V = 0, swings wide, backs
up momentarily, and then continues its clockwise
motion to spiral in toward the limiting cycle that
represents the steady state solution.

PROBLEMS

1 .
2 .

3 .

4.

Rerun the text example with F = -40.
Rerun the text example (a) with G = .5, and (b) with
G = .5 and F = -40.
Rerun the text example
a) with G = .25, XMAX = 25, TMAX = 20
b) with G = .25, XMAX = 25, TMAX = 20, and F = -40.
Set the program's main menu with
G=l, WO = 2, F = 40, W = 4, X0 = 24, V0 = 0,
as in the text example, and scale the display axes with
XMAX = 30 and TMAX = 10. Then graph
a) X(T), Xh(T), and X^CT) together.
b) V(T), Vh(T), and Vp(T) together.
c) E(T), E^T), and Ep(T) together.
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Problems 5-14 are about the following oscillator: A
mass of 3.0 kg is suspended from a spring. The spring
constant is 1200 N/m. Whenever the mass moves, it
encounters a resistive force given by F = -bv, where
b = 10 N sec/m and v is the velocity of the mass in m/sec.
The mass is driven by sinusoidal force with W = 30/sec and
an amplitude of 30 N.
5. Find the resonant frequency of the system.
6. Approximately how long does it take for the transient

behavior of the system to disappear?
7. Find the amplitude of the forced vibration in the

steady state.
8. Find out what happens to the amplitude of the forced

vibration in the steady state for a succession of cases
in which the driving frequency W lies (a) far below,
(b) just below, (c) at, (d) just above, and (e) far
above the resonant frequency WO.

9. In each part of Problem 4, examine the phase difference
between the driving force and the amplitude of the
forced vibration in the steady state.

10. Plot the amplitude of the forced vibration as a
function of the frequency of the driving force divided
by the resonant frequency, i.e., W/WO.

11. Plot the phase difference between the forced vibration
and the driving force as a function of the frequency of
the driving force divided by the resonant frequency,
i.e., W/WO.

12. Examine the energy in the system as a function of time
in (a) Problem 10 and (b) Problem 11.

13. Examine the phase plane diagram in (a) Problem 10 and
(b) Problem 11.

14. Do the representations in Problems 10 and 11 contain
the same information? If not, what are the
differences?



Appendix A. Algebraic Notation

1. PURPOSE
This appendix describes some of the computer notation for

algebraic operations.

2. COMPUTER FORMAT

Ooeration ComputerExpression
Textbook
Notat ion

add X + Y X + y
subtract X - Y x - y
m u l t i p l y X * Y xy, x#y, or x Xy
divide X / Y x/y or x t y
raise to power X a Y xy

For example, press 15.1 1*1 IXI I RETURN I to enter the product
5x and press IJI 1*1 Ixl |+| |f| I RETURN I to enter the
expression 5x + y.

Always use an asterisk (*) for multiplication. The
computer interprets XY (without the asterisk) as the name of
a single variable and will report a syntax error if you
attempt to enter 5Y.

Operations are carried out from left to right according
to three "levels" of precedence:

Leve l 1 . / \ ( fi r s t p recedence , execu ted fi rs t )
Level 2. *, / (executed next)
Level 3. +, - (executed last).

Examples

5*3+2 = 15 +2 = 17
5+3*2 = 5+6 = 11
5+2/\3=5 + 8 = 13
2 - 5 * 2 / \ 3 =2 -5*8 = 2 -40= -38 .
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Parentheses take precedence over all binary operations
and may therefore be used to control the order of execution.

Examples

(2 + 5) * 2^3 = 7 * 8 = 56
((2 + 5) * 2)^3 = (7 * 2)a3 = 14/\ 3 = 2,744
3 / (2 - 4) =3 / (-2) =-1.5

Within any level of precedence, evaluation proceeds from
left to right.

Examples

3 + 5 - 4 = 8 - 4 = 4
5 - 4 + 3 = 1 + 3 = 4
3*8/4 = 24 /4 = 6
8 / 4 * 3 = 2 * 3 = 6

The last of these examples indicates a usage somewhat
different from that on the printed page. In evaluating the
textbook expression x/yz, you first multiply y by z, then
divide. Resist the temptation to use X / Y * Z as the
corresponding computer expression. The computer executes the
operations in this expression from left to right because /
and * share a precedence level. It therefore evaluates
X / Y * Z a s X / Y * Z = ( X / Y ) * Z .

To evaluate Use

| j X / Y / Z o r X / ( Y * Z )
|Z X * Y / Z , X / Z * Y, or (X * Y) / Z .z

Division by zero is never possible because no expression
of the form a/0 satisfies the definition of division. This
point is especially important in computer operation, since
the problem may be hidden in some ways. For example, a
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particular application may involve evaluating the function

f(x) = (x3 - l)/(x2 + 2x + 1)
at points equally spaced across the interval from -2 to 2.
If care is not taken, the corresponding computer variable X
may be assigned the value -1, and a "division by zero" error
would result.

There are exceptions to the guidance on division by
zero, however. Several Toolkit programs contain a subroutine
that checks for an impending instruction to divide by zero,
cancels any such instruction when it finds one, and takes an
appropriate course of action in executing the graphics

'-""— routines. Thus, for example, in using SUPER*GRAPHER, you may
ask for a graph of f(x) = 1/x from -2 to 2, specify a number
of plotting points that results in the assignment of 0 to the
computer variable X, and still obtain a good display.

3. SPACES
You may include spaces in algebraic expressions (X + Y)

or omit them (X+Y), as you please. The main reason for
including spaces is legibil i ty. However, spaces contribute
to a formula's character count, and an expression that
exceeds the number of characters allowed for entry into a
Toolkit program menu may be sometimes shortened to an
acceptable size by reducing the number of spaces.
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Appendix B. Function Notation

1. PURPOSE
This appendix describes the format for entering formulas

for commonly used mathematical functions into the computer.

2 .
In using Toolkit programs, you often need to enter

formulas for mathematical functions. The following table
lists expressions in BASIC for the functions that are
evaluated directly by the computer's subroutines.

Mathematical ComputerFunction Expression

s i n x SIN(X)
cos X COS(X)
t a n x TAN(X)
arctan x ATN(X)
\/r SQR(X)
Ixl ABS(X)
ex, or exp x EXP(X)
lnx LOG(X)
[x] INT(X)
sgnx SGN(X)

:est integer functiIon [z] is de
real numbers to be the greatest integer that is less than or
equal to x. Thus, [4.5] = 4, [4] = 4, and [-1.3] = -2.

The sienum function sgn x is defined by the rule
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Examples
M a t h e m a t i c a l C o m p u t e rF u n c t i o n E x p r e s s i o n
s i n 2 x S T N ( 2 « X )
I n ( x + y ) L 0 G ( X + Y )
c o s n x C 0 S ( P I * X )
a r c t a n ( y / x ) o r t a n - 1 ( y / x ) A T N ( Y / X ) * * » *

Many other functions can be expressed in terms of the
computer's BASIC functions:

Mathematical ComputerFunction Expression
cot X 1/TAN(X)
sec x 1/C0S(X)
CSC X 1/SIN(X)
arc sinx ATN(X)/SQR(1 - X*X)
arc cos x PI/2 - AIN(X/SQR(1 - X*X))
arc cot x PI/2 - ATN(X)
arc sec x ATN(S0R(X*X - 1)) + (SGN(X) - 1)
sinhx (EXP(X) - EXP(-X))/2
coshx (EXP(X) + EXP(-X))/2
tanhx 1 - 2*EXP(-X)/(EXP(X) + EXP(-X))
cothx 1 + 2*EXP(-X)/(EXP(X) - EXP(-X))
sechx 2/(EXP(X) + EXP(-X))
arc sinhx L0G(X + SGB(1 +X*X))
arc coshx L0G(X + SQR(X*X - 1))
arc tanhx L0G((1 +X)/(1 - X))/2
arc cothx L0G((X + 1)/(X- l))/2
arc sech x L0G(SQR(1 - X*X) + 1)/X
arc cschx L0G(SGN(X)*SQR(1 + X*X) + 1)/X

* PI/2

The computer is always in radian mode: SIN(1.5) is
evaluated as the sine of 1.5 radians and AIN(l) returns a
decomal approximation of n/4.

Most Toolkit programs accept PI for n (press |P| III).
It is usually not necessary to enter a decimal approximation.
Some programs also accept E for e.



Answers to Selected
Problems

Section 5: 1)
6)

Section 6: 1.

2.
4.
5.

A.
1 2) 2/3 3) 1/2 4) 0 5) 2/5
e - 2.71828... 7) 0 8) n/2
V takes on a maximum value of ClC22/4 at
X = C2/2, a point whose location
depends on C2 alone.
Maximum at X = Cl/6
Maximum at X = 2 CI/3
aandb: - V2" i F £ n/2"
c) -1/2 1 F i 1/2

J. ROOT FINDER
13. With XO = 2, XI = 4: K - 1 for B, K - 4 for S,

K - 5 for R, K = 3 for N
14. X* - 2, 4, -.766664696
15. At K = 11 the computer finds X* - 1.00024414.

As far as the computer is concerned, (.00024414) = 0.
16. The computation stops at K = 6 with F(l .0078152) - 0.

As far as the computer is concerned, the root has been
found. With TOL - 1E-100 the computation will still
stop at E - 6.

17. X* = -1.53208889, -.347296335, 1.87938524
18. X* = .630115396, 2.57327196
19. X* = 0, .868876851, 1
20. X* = +1.306562965, + .5411961001

M. INTEGRAL EVALUATOR
1) -4 2) 2 3) 8.4 4) 1.14779358 5) 1.57074898
6) 3.24130926 7) 0 (Computed values are around 10~8) 8) 1
9) .970753907 10) 2.54517744 11) 1.71828183
12) 1.22619117 13) 26.9738382 14) 1.13197175
15) 1.17520119 16) .077520710 17) -.847382017
18) 1.14915123 19) -.25 20) 656.528364 21) .915965595
22) 2.9253 (to four places) 23) .1963495408 24) 1.3114425
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P. CONIC SECTIONS

The answers to Problems 6-10 will vary.
6. Among the possibil it ies are: a) Up 1 b) Up 1,

r o t a t e + 4 5 ° c ) U p 1 , r o t a t e + 9 0 ° d ) D o w n 1 , r o t a t e *■» >
-45°

7. Among the possib i l i t ies are: a) Lef t 2 b) Lef t 2,
down 2 c) Left 2, down 2, rotate +45° d) Left 2,
down 2, rotate +90°. Try left 2, up 2 as well.

8. Among the possibilities are: a) Up 3 b) Dp 3,
rotate +180 c) Down 3 d) Rotate +45°

9. Among the possibi l i t ies are: a) Rotate +90°
b) Rotate +15° c) Right 1, up 1 d) Right 2, down 3

10 Among the possibi l i t ies are: a) Rotate +90°
b) Rotate +90°, right 1 c) Rotate +90°, left 10,
up 1 d) Rotate 180°, right 1

11. a,b,d, and e: no change
c) Changes the sign of one side of the equation.

12. All: Interchanges x and y. In (b), this means no
change in the equation.

The motions in Answers 13 -17 are not the only ones to
work.
13. Hyperbola, left 7
14. Line, down 5, rotate +135°
15. Ellipse, right 3
16. Parabola, left 11
17. Parabola, UNIT = .1, up 1

Q. SEQUENCES AND SERIES
16. a) n/2 b) 2n + n/2 c) n/2
17. a) 2 b) 1.5 c) 4.99994291 d) .909090909

U. DOUBLE INTEGRAL EVALUATOR

3) 1 4) .5 5) 5/6 6) 16/3 7) 1.875 8) 1/6 9) .60347448
10) fl 11) 9 12) .199788200 13) .287828705 14) 6.27657703
1 5 ) . 2 3 3 2 0 7 8 1 4 1 6 ) . 2 4 7 6 1 9 0 4 8 < - * -
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programs contain applications, graphical calculation tools, and
dynamic illustrations of the concepts of calculus. This User Man
ual provides the purpose, description, and step-by-step instruc
tions for each program.
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